
Adversarial Examples Are Not Bugs, They Are Features

Andrew Ilyas∗
MIT

ailyas@mit.edu

Shibani Santurkar∗
MIT

shibani@mit.edu

Dimitris Tsipras∗
MIT

tsipras@mit.edu

Logan Engstrom∗

MIT
engstrom@mit.edu

Brandon Tran
MIT

btran115@mit.edu

Aleksander Mądry
MIT

madry@mit.edu

Abstract

Adversarial examples have attracted significant attention in machine learning, but the reasons for their
existence and pervasiveness remain unclear. We demonstrate that adversarial examples can be directly
attributed to the presence of non-robust features: features derived from patterns in the data distribution that
are highly predictive, yet brittle and incomprehensible to humans. After capturing these features within
a theoretical framework, we establish their widespread existence in standard datasets. Finally, we present
a simple setting where we can rigorously tie the phenomena we observe in practice to a misalignment
between the (human-specified) notion of robustness and the inherent geometry of the data.

1 Introduction

The pervasive brittleness of deep neural networks [Sze+14; Eng+19; HD19; Ath+18] has attracted signifi-
cant attention in recent years. Particularly worrisome is the phenomenon of adversarial examples [Sze+14],
imperceptibly perturbed natural inputs that induce erroneous predictions in state-of-the-art classifiers. Pre-
vious work has proposed a variety of explanations for this phenomenon, ranging from theoretical models
[Sch+18; BPR18] to arguments based on concentration of measure in high-dimensions [Gil+18; MDM18;
Sha+19a]. These theories, however, are often unable to fully capture behaviors we observe in practice (we
discuss this further in Section 5).

More broadly, previous work in the field tends to view adversarial examples as aberrations arising either
from the high dimensional nature of the input space or statistical fluctuations in the training data [Sze+14;
GSS15; Gil+18]. From this point of view, it is natural to treat adversarial robustness as a goal that can
be disentangled and pursued independently from maximizing accuracy [Mad+18; SHS19; Sug+19], ei-
ther through improved standard regularization methods [TG16] or pre/post-processing of network in-
puts/outputs [Ues+18; CW17a; He+17].

In this work, we propose a new perspective on the phenomenon of adversarial examples. In contrast
to the previous models, we cast adversarial vulnerability as a fundamental consequence of the dominant
supervised learning paradigm. Specifically, we claim that:

Adversarial vulnerability is a direct result of our models’ sensitivity to well-generalizing features in the data.

Recall that we usually train classifiers to solely maximize (distributional) accuracy. Consequently, classifiers
tend to use any available signal to do so, even those that look incomprehensible to humans. After all, the
presence of “a tail” or “ears” is no more natural to a classifier than any other equally predictive pattern. In
fact, we find that standard ML datasets do contain highly predictive yet imperceptible patterns. We posit
that our models learn to rely on “non-robust” features arising from such patterns, leading to adversarial
perturbations that exploit this dependence.

∗Equal contribution

1

Our hypothesis also suggests an explanation for adversarial transferability: the phenomenon that adver-
sarial perturbations computed for one model often transfer to other, independently trained models. Since
any two models are likely to learn similar non-robust features, perturbations that manipulate such features
will apply to both. Finally, this perspective establishes adversarial vulnerability as a purely human-centric
phenomenon, since, from the standard supervised learning point of view, non-robust features can be as
important as robust ones. It also suggests that approaches aiming to enhance the interpretablity of a given
model by enforcing “priors” for its explanation [Erh+09; MV15; OMS17] actually hide features that are
“meaningful” and predictive to standard models. As such, producing human-meaningful explanations that
remain faithful to underlying models cannot be pursued independently from the training of the models
themselves.

To corroborate our theory, we show that it is possible to disentangle robust from non-robust features in
standard image classification datasets. Specifically, given any training dataset, we are able to construct:

1. A “robustified” version for robust classification (Figure 1a). We demonstrate that it is possible to ef-
fectively remove non-robust features from a dataset. Concretely, we create a training set (semantically
similar to the original) on which standard training yields good robust accuracy on the original, unmodified
test set. This finding establishes that adversarial vulnerability is not necessarily tied to the standard
training framework, but is rather a property of the dataset.

2. A “non-robust” version for standard classification (Figure 1b). We are also able to construct a train-
ing dataset for which the inputs are nearly identical to the originals, but all appear incorrectly labeled.
In fact, the inputs in the new training set are associated to their labels only through small adversarial
perturbations (and hence utilize only non-robust features). Despite the lack of any predictive human-
visible information, training on this dataset yields good accuracy on the original, unmodified test set.

Finally, we present a concrete classification task where the connection between adversarial examples and
non-robust features can be studied rigorously. This task consists of separating Gaussian distributions, and
is loosely based on the model presented in Tsipras et al. [Tsi+19], while expanding upon it in a few ways.
First, adversarial vulnerability in our setting can be precisely quantified as a difference between the intrinsic
data geometry and that of the adversary’s perturbation set. Second, robust training yields a classifier which
utilizes a geometry corresponding to a combination of these two. Lastly, the gradients of standard models
can be significantly more misaligned with the inter-class direction, capturing a phenomenon that has been
observed in practice in more complex scenarios [Tsi+19].

Robust dataset

Train

good standard accuracy
good robust accuracy

good standard accuracy
bad robust accuracy

Unmodified
test set

Training image

frog

frog

frog

Non-robust dataset

(a)

Evaluate on
original test set

Training image

Robust Features: dog
Non-Robust Features: dog

dog

Relabel as cat

Robust Features: dog
Non-Robust Features: cat

cat

cat

max P(cat)

Adversarial example
towards “cat”

Traingood accuracy

(b)

Figure 1: A conceptual diagram of the experiments of Section 3. In (a) we disentangle features into combi-
nations of robust/non-robust features (Section 3.1). In (b) we construct a dataset which appears mislabeled
to humans (via adversarial examples) but results in good accuracy on the original test set (Section 3.2).

2

2 The Robust Features Model

We begin by developing a framework, loosely based on the setting proposed by Tsipras et al. [Tsi+19],
that enables us to rigorously refer to “robust” and “non-robust” features. In particular, we present a set of
definitions which allow us to formally describe our setup, theoretical results, and empirical evidence.

Setup. We consider binary classification1, where input-label pairs (x, y) ∈ X × {±1} are sampled from a
(data) distribution D; the goal is to learn a classifier C : X → {±1} which predicts a label y corresponding
to a given input x.

We define a feature to be a function mapping from the input space X to the real numbers, with the set
of all features thus being F = { f : X → R}. For convenience, we assume that the features in F are
shifted/scaled to be mean-zero and unit-variance (i.e., so that E(x,y)∼D [f (x)] = 0 and E(x,y)∼D [f (x)2] = 1),
in order to make the following definitions scale-invariant2. Note that this formal definition also captures
what we abstractly think of as features (e.g., we can construct an f that captures how “furry” an image is).

Useful, robust, and non-robust features. We now define the key concepts required for formulating our
framework. To this end, we categorize features in the following manner:

• ρ-useful features: For a given distributionD, we call a feature f ρ-useful (ρ > 0) if it is correlated with
the true label in expectation, that is if

E(x,y)∼D [y · f (x)] ≥ ρ. (1)

We then define ρD(f) as the largest ρ for which feature f is ρ-useful under distribution D. (Note that
if a feature f is negatively correlated with the label, then − f is useful instead.) Crucially, a linear
classifier trained on ρ-useful features can attain non-trivial generalization performance.

• γ-robustly useful features: Suppose we have a ρ-useful feature f (ρD(f) > 0). We refer to f as a
robust feature (formally a γ-robustly useful feature for γ > 0) if, under adversarial perturbation (for
some specified set of valid perturbations ∆), f remains γ-useful. Formally, if we have that

E(x,y)∼D

[
inf

δ∈∆(x)
y · f (x + δ)

]
≥ γ. (2)

• Useful, non-robust features: A useful, non-robust feature is a feature which is ρ-useful for some ρ
bounded away from zero, but is not a γ-robust feature for any γ ≥ 0. These features help with classi-
fication in the standard setting, but may hinder accuracy in the adversarial setting, as the correlation
with the label can be flipped.

Classification. In our framework, a classifier C = (F, w, b) is comprised of a set of features F ⊆ F , a
weight vector w, and a scalar bias b. For a given input x, the classifier predicts the label y as

C(x) = sgn

(
b + ∑

f∈F
w f · f (x)

)
.

For convenience, we denote the set of features learned by a classifier C as FC.

1Our framework can be straightforwardly adapted though to the multi-class setting.
2This restriction can be straightforwardly removed by simply shifting/scaling the definitions.

3

Standard Training. Training a classifier is performed by minimizing a loss function (via empirical risk
minimization (ERM)) that decreases with the correlation between the weighted combination of the features
and the label. The simplest example of such a loss is 3

E(x,y)∼D [Lθ(x, y)] = −E(x,y)∼D

[
y ·
(

b + ∑
f∈F

w f · f (x)

)]
. (3)

When minimizing classification loss, no distinction exists between robust and non-robust features: the only
distinguishing factor of a feature is its ρ-usefulness. Furthermore, the classifier will utilize any ρ-useful
feature in F to decrease the loss of the classifier.

Robust training. In the presence of an adversary, any useful but non-robust features can be made anti-
correlated with the true label, leading to adversarial vulnerability. Therefore, ERM is no longer sufficient
to train classifiers that are robust, and we need to explicitly account for the effect of the adversary on the
classifier. To do so, we use an adversarial loss function that can discern between robust and non-robust
features [Mad+18]:

E(x,y)∼D

[
max

δ∈∆(x)
Lθ(x + δ, y)

]
, (4)

for an appropriately define set of perturbations ∆. Since the adversary can exploit non-robust features to de-
grade classification accuracy, minimizing this adversarial loss (as in adversarial training [GSS15; Mad+18])
can be viewed as explicitly preventing the classifier from learning a useful but non-robust combination of
features.

3 Finding Robust (and Non-Robust) Features

The central premise of our proposed framework is that there exist both robust and non-robust features that
constitute useful signals for standard classification. We now provide evidence in support of this hypothesis
by disentangling these two sets of features.

On one hand, we will construct a “robustified” dataset, consisting of samples that primarily contain
robust features. Using such a dataset, we are able to train robust classifiers (with respect to the standard
test set) using standard (i.e., non-robust) training. This demonstrates that robustness can arise by removing
certain features from the dataset (as, overall, the new dataset contains less information about the original
training set). Moreover, it provides evidence that adversarial vulnerability is caused by non-robust features
and is not inherently tied to the standard training framework.

On the other hand, we will construct datasets where the input-label association is based purely on non-
robust features (and thus the corresponding dataset appears completely mislabeled to humans). We show
that this dataset suffices to train a classifier with good performance on the standard test set. This indicates
that natural models use non-robust features to make predictions, even in the presence of robust features.
These features alone are actually sufficient for non-trivial generalizations performance on natural images,
which indicates that they are indeed valuable features, rather than artifacts of overfitting.

A conceptual description of these experiments can be found in Figure 1.

3.1 Disentangling robust and non-robust features

Recall that features a classifier learns to rely on are based purely on how useful these features are for (stan-
dard) generalization. Thus, under our conceptual framework, if we can ensure that only robust features are
useful, standard training should result in a robust classifier. Unfortunately, we cannot directly manipulate
the features of very complex, high-dimensional datasets. Instead, we will leverage a robust model and
modify our dataset to contain only the features that are relevant to that model.

3Just as for the other parts of this model, we use this loss for simplicity only—it is straightforward to generalize to more practical
loss function such as logistic or hinge loss.

4

“airplane’’ “ship’’ “dog’’ “frog’’“truck’’
D

D̂ N
R

D̂ R

(a)

Std Training
 using

Adv Training
 using

Std Training
 using R

Std Training
 using NR

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
on

 (%

)

Std accuracy Adv accuracy (= 0.25)

(b)

Figure 2: Left: Random samples from our variants of the CIFAR-10 [Kri09] training set: the original training
set; the robust training set D̂R, restricted to features used by a robust model; and the non-robust training
set D̂NR, restricted to features relevant to a standard model (labels appear incorrect to humans). Right:
Standard and robust accuracy on the CIFAR-10 test set (D) for models trained with: (i) standard training
(on D) ; (ii) standard training on D̂NR; (iii) adversarial training (on D); and (iv) standard training on D̂R.
Models trained on D̂R and D̂NR reflect the original models used to create them: notably, standard training
on D̂R yields nontrivial robust accuracy. Results for Restricted-ImageNet [Tsi+19] are in D.7 Figure 12.

In terms of our formal framework (Section 2), given a robust (i.e. adversarially trained) model C we aim
to construct a distribution D̂R which satisfies:

E(x,y)∼D̂R
[f (x) · y] =

{
E(x,y)∼D [f (x) · y] if f ∈ FC

0 otherwise,
(5)

where FC again represents the set of features utilized by C. Conceptually, we want features used by C to
be as useful as they were on the original distribution D while ensuring that the rest of the features are not
useful under D̂NR.

We will construct a training set for D̂R via a one-to-one mapping x 7→ xr from the original training set for
D. In the case of a deep neural network, FC corresponds to exactly the set of activations in the penultimate
layer (since these correspond to inputs to a linear classifier). To ensure that features used by the model are
equally useful under both training sets, we (approximately) enforce all features in FC to have similar values
for both x and xr through the following optimization:

min
xr
‖g(xr)− g(x)‖2, (6)

where x is the original input and g is the mapping from x to the representation layer. We optimize this
objective using gradient descent in input space4.

Since we don’t have access to features outside FC, there is no way to ensure that the expectation in (5) is
zero for all f 6∈ FC. To approximate this condition, we choose the starting point of gradient descent for the
optimization in (6) to be an input x0 which is drawn fromD independently of the label of x (we also explore
sampling x0 from noise in Appendix D.1). This choice ensures that any feature present in that input will
not be useful since they are not correlated with the label in expectation over x0. The underlying assumption
here is that, when performing the optimization in (6), features that are not being directly optimized (i.e.,
features outside FC) are not affected. We provide pseudocode for the construction in Figure 5 (Appendix C).

Given the new training set for D̂R (a few random samples are visualized in Figure 2a), we train a clas-
sifier using standard (non-robust) training. We then test this classifier on the original test set (i.e. D). The

4We follow [Mad+18] and normalize gradient steps during this optimization. Experimental details are provided in Appendix C.

5

results (Figure 2b) indicate that the classifier learned using the new dataset attains good accuracy in both
standard and adversarial settings 5 6.

As a control, we repeat this methodology using a standard (non-robust) model for C in our construction
of the dataset. Sample images from the resulting “non-robust dataset” D̂NR are shown in Figure 2a—they
tend to resemble more the source image of the optimization x0 than the target image x. We find that training
on this dataset leads to good standard accuracy, yet yields almost no robustness (Figure 2b). We also verify
that this procedure is not simply a matter of encoding the weights of the original model—we get the same
results for both D̂R and D̂NR if we train with different architectures than that of the original models.

Overall, our findings corroborate the hypothesis that adversarial examples arise from (non-robust) fea-
tures of the data itself. By filtering out non-robust features from the dataset (e.g. by restricting the set of
available features to those used by a robust model), one can train a robust model using standard training.

3.2 Non-robust features suffice for standard classification

The results of the previous section show that by restricting the dataset to only contain features that are used
by a robust model, standard training results in classifiers that are robust. This suggests that when training
on the standard dataset, non-robust features take on a large role in the resulting learned classifier. Here we
set out to show that this role is not merely incidental or due to finite-sample overfitting. In particular, we
demonstrate that non-robust features alone suffice for standard generalization— i.e., a model trained solely
on non-robust features can perform well on the standard test set.

To show this, we construct a dataset where the only features that are useful for classification are non-
robust features (or in terms of our formal model from Section 2, all features f that are ρ-useful are non-
robust). To accomplish this, we modify each input-label pair (x, y) as follows. We select a target class t
either (a) uniformly at random among classes or (b) deterministically according to the source class (e.g.
using a fixed permutation of labels). Then, we add a small adversarial perturbation to x in order to ensure
it is classified as t by a standard model. Formally:

xadv = arg min
‖x′−x‖≤ε

LC(x′, t), (7)

where LC is the loss under a standard (non-robust) classifier C and ε is a small constant. The resulting
inputs are nearly indistinguishable from the originals (Appendix D Figure 9)—to a human observer, it thus
appears that the label t assigned to the modified input is simply incorrect. The resulting input-label pairs
(xadv, t) make up the new training set (pseudocode in Appendix C Figure 6).

Now, since ‖xadv − x‖ is small, by definition the robust features of xadv are still correlated with class
y (and not t) in expectation over the dataset. After all, humans still recognize the original class. On the
other hand, since every xadv is strongly classified as t by a standard classifier, it must be that some of the
non-robust features are now strongly correlated with t (in expectation). Thus, for any choice of t (whether
random or deterministic), only non-robust features of the new dataset agree with that new label assignment.

In the case where t is chosen at random, the robust features are (in expectation) uncorrelated with the
label t, and are thus not useful for classification. Formally, we aim to construct a dataset D̂rand where 7 :

E(x,y)∼D̂rand
[y · f (x)]

{
> 0 if f non-robustly useful under D,
= 0 otherwise.

(8)

When t is chosen deterministically based on y, the robust features actually point away from the assigned
label t. In particular, all of the inputs labeled with class t exhibit non-robust features correlated with t, but
robust features correlated with the original class y. Thus, robust features on the original training set provide

5In an attempt to explain the gap in accuracy between the model trained on D̂R and the original robust classifier C, we test
distributional shift, by reporting results on the “robustified” test set in Appendix D.3.

6In order to gain more confidence in the robustness of the resulting model, we attempt several diverse attacks in Appendix D.2.
7Note that the optimization procedure we describe aims to merely approximate this condition, where we once again use trained

models to simulate access to robust and non-robust features.

6

significant predictive power on the training set, but will actually hurt generalization on the standard test
set. Viewing this case again using the formal model, our goal is to construct D̂det such that

E(x,y)∼D̂det
[y · f (x)]

> 0 if f non-robustly useful under D,
< 0 if f robustly useful under D
∈ R otherwise (f not useful under D)8

(9)

We find that standard training on these datasets actually generalizes to the original test set, as shown in
Table 1). This indicates that non-robust features are indeed useful for classification in the standard setting.
Remarkably, even training on D̂det (where all the robust features are correlated with the wrong class), results
in a well-generalizing classifier. This indicates that non-robust features can be picked up by models during
standard training, even in the presence of robust features that are predictive on the training set 9.

25 30 35 40 45 50

Test accuracy on (%; trained on det)

60

70

80

90

100

Tr
an

sf
er

 su
cc

es
s r

at
e

on

 (%
)

VGG-16

Inception-v3

ResNet-18 DenseNet

ResNet-50

Figure 3: Transfer rate of adversarial exam-
ples from a ResNet-50 to different architectures
alongside test set performance of these archi-
tecture when trained on the dataset generated
in Section 3.2. Architectures more susceptible
to transfer attacks also performed better on the
standard test set supporting our hypothesis that
adversarial transferability arises from utilizing
similar non-robust features.

Source Dataset
Dataset

CIFAR-10 ImageNetR

D 95.3% 96.6%

D̂rand 63.3% 87.9%
D̂det 43.7% 64.4%

Table 1: Test accuracy (on D) of classifiers
trained on the D, D̂rand, and D̂det training sets
created using a standard (non-robust) model.
For both D̂rand and D̂det, only non-robust fea-
tures correspond to useful features on both the
train set and D. These datasets are constructed
using adversarial perturbations of x towards a
class t (random for D̂rand and deterministic for
D̂det); the resulting images are relabeled as t.

3.3 Transferability can arise from non-robust features

One of the most intriguing properties of adversarial examples is that they transfer across models with dif-
ferent architectures and independently sampled training sets [Sze+14; PMG16; CRP19]. Here, we show that
this phenomenon can in fact arise as a natural consequence of the existence of non-robust features. Recall
that, according to our main thesis, adversarial examples are the result of perturbing well-generalizing, yet
brittle, features. Given that such features are inherent to the data distribution, different classifiers trained
on independent samples from that distribution are likely to utilize similar non-robust features. Conse-
quently, an adversarial example constructed by exploiting the non-robust features learned by one classifier
will transfer to any other classifier utilizing these features in a similar manner.

In order to illustrate and corroborate this hypothesis, we train five different architectures on the dataset
generated in Section 3.2 (adversarial examples with deterministic labels) for a standard ResNet-50 [He+16].
Our hypothesis would suggest that architectures which learn better from this training set (in terms of per-
formance on the standard test set) are more likely to learn similar non-robust features to the original clas-
sifier. Indeed, we find that the test accuracy of each architecture is predictive of how often adversarial

8 Note that regardless how useful a feature is on D̂det, since it is useless on D it cannot provide any generalization benefit on the
unaltered test set.

9We provide additional results and analysis (e.g. training curves, generating D̂rand and D̂det with a robust model, etc.) in Ap-
pendix D.6 and D.5

7

examples transfer from the original model to standard classifiers with that architecture (Figure 3). These
findings support our hypothesis that adversarial transferability arises when models learn similar brittle
features of the underlying dataset.

4 A Theoretical Framework for Studying (Non)-Robust Features

The experiments of the previous section demonstrate that the conceptual framework of robust and non-
robust features is strongly predictive of the empirical behavior of state-of-the-art models on real-world
datasets. In order to strengthen our understanding of the phenomenon, we instantiate the framework in a
concrete setting that allows us to theoretically study various properties of the model. Our model is similar
to that of Tsipras et al. [Tsi+19] in the sense that it contains a dichotomy between robust and non-robust
features, but extends upon it in a number of ways:

1. The adversarial vulnerability can be explicitly expressed as a difference between the inherent data
metric and the `2 metric.

2. Robust learning corresponds exactly to learning a combinations these two metrics.

3. The gradients of adversarially trained models align better with the adversary’s metric.

Setup. We study the simple problem of maximum likelihood classification between two Gaussian distribu-
tions. In particular, given samples (x, y) sampled from D according to

y u.a.r.∼ {−1,+1}, x ∼ N (y · µ∗, Σ∗), (10)

our goal is to learn parameters Θ = (µ, Σ) such that

Θ = arg min
µ,Σ

E(x,y)∼D [`(x; y · µ, Σ)] , (11)

where `(x; µ, Σ) represents the Gaussian negative log-likelihood (NLL) function. Intuitively, we find the
parameters µ, Σ which maximize the likelihood of the sampled data under the given model. Classification
under this model can be accomplished via likelihood test: given an unlabeled sample x, we predict y as

y = arg max
y

`(x; y · µ, Σ) = sign
(

x>Σ−1µ
)

.

In turn, the robust analogue of this problem arises from replacing `(x; y ·µ, Σ) with the NLL under adversarial
perturbation. The resulting robust parameters Θr can be written as

Θr = arg min
µ,Σ

E(x,y)∼D

[
max
‖δ‖2≤ε

`(x + δ; y · µ, Σ)

]
, (12)

A detailed analysis of this setting is in Appendix E—here we present a high-level overview of the results.

(1) Vulnerability from metric misalignment (non-robust features). Note that in this model, one can rig-
orously make reference to an inner product (and thus a metric) induced by the features. In particular, one
can view the learned parameters of a Gaussian Θ = (µ, Σ) as defining an inner product over the input
space given by 〈x, y〉Θ = (x− µ)>Σ−1(y− µ). This in turn induces the Mahalanobis distance, which repre-
sents how a change in the input affects the features learned by the classifier. This metric is not necessarily
aligned with the metric in which the adversary is constrained, the `2-norm. We first show that adversarial
vulnerability arises as a misalignment between these two metrics.

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary whose perturbation is deter-
mined by the “Lagrangian penalty” form of (12), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

8

20 15 10 5 0 5 10 15 20
Feature x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Fe

at
ur

e
x 2

Maximum likelihood estimate
2 unit ball

1-induced metric unit ball
Samples from (0,)

20 15 10 5 0 5 10 15 20
Feature x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fe
at

ur
e

x 2

True Parameters (= 0)
Samples from (,)
Samples from (,)

20 15 10 5 0 5 10 15 20
Feature x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fe
at

ur
e

x 2

Robust parameters, = 1.0

20 15 10 5 0 5 10 15 20
Feature x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Fe
at

ur
e

x 2

Robust parameters, = 10.0

Figure 4: An empirical demonstration of the effect illustrated by Theorem 2—as the adversarial perturba-
tion budget ε is increased, the learned mean µ remains constant, but the learned covariance “blends” with
the identity matrix, effectively adding more and more uncertainty onto the non-robust feature.

where C is a constant trading off NLL minimization and the adversarial constraint. Then, the adversarial loss Ladv
incurred by the non-robustly learned (µ, Σ) is given by:

Ladv(Θ)−L(Θ) = tr
[(

I + (C · Σ∗ − I)−1
)2
]
− d,

and, for a fixed tr(Σ∗) = k the above is minimized by Σ∗ = k
d I.

In fact, note that such a misalignment corresponds to exactly the existence of a non-robust feature, as it
indicates that “small” changes in the adversary’s metric along certain directions can cause large changes
under the data-dependent notion of distance established by the parameters. This is illustrated in Figure 4,
where misalignment in the feature-induced metric is responsible for the presence of a non-robust feature in
the corresponding classification problem.

(2) Robust Learning. The optimal (non-robust) maximum likelihood estimate is Θ = Θ∗, and thus the
vulnerability for the standard MLE estimate is governed entirely by the true data distribution. The follow-
ing theorem characterizes the behaviour of the learned parameters in the robust problem. 10. In fact, we can
prove (Section E.3.4) that performing (sub)gradient descent on the inner maximization (also known as ad-
versarial training [GSS15; Mad+18]) yields exactly Θr. We find that as the perturbation budget ε is increased,
the metric induced by the learned features mixes `2 and the metric induced by the features.

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ∗, i.e. the true mean is learned.
For the robust covariance Σr, there exists an ε0 > 0, such that for any ε ∈ [0, ε0),

Σr =
1
2

Σ∗ +
1
λ
· I +

√
1
λ
· Σ∗ +

1
4

Σ2∗, where Ω

(
1 + ε1/2

ε1/2 + ε3/2

)
≤ λ ≤ O

(
1 + ε1/2

ε1/2

)
.

The effect of robust optimization under an `2-constrained adversary is visualized in Figure 4. As ε
grows, the learned covariance becomes more aligned with identity. For instance, we can see that the classi-
fier learns to be less sensitive in certain directions, despite their usefulness for natural classification.

(3) Gradient Interpretability. Tsipras et al. [Tsi+19] observe that the gradients of robust models tend to
look more semantically meaningful. It turns out that under our model, this behaviour arises as a natural
consequence of Theorem 2. In particular, we show that the resulting robustly learned parameters cause the
gradient of the linear classifier and the vector connecting the means of the two distributions to better align
(in a worst-case sense) under the `2 inner product.

10Note: as discussed in Appendix E.3.3, we study a slight relaxation of (12) that approaches exactness exponentially fast as d→ ∞

9

Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on the linear separator induced
by standard and `2-robust maximum likelihood classification, respectively. The maximum angle formed between the
gradient of the classifier (wrt input) and the vector connecting the classes can be smaller for the robust model:

min
µ

〈µ,∇x fr(x)〉
‖µ‖ · ‖∇x fr(x)‖ > min

µ

〈µ,∇x f (x)〉
‖µ‖ · ‖∇x f (x)‖ .

Figure 4 illustrates this phenomenon in the two-dimensional case. With `2-bounded adversarial training
the gradient direction (perpendicular to the decision boundary) becomes increasingly aligned under the `2
inner product with the vector between the means (µ).

Discussion. Our theoretical analysis suggests that rather than offering any sort of quantitative classifica-
tion benefit, a natural way to view the role of robust optimization is as enforcing a prior over the features
learned by the classifier. In particular, training with an `2-bounded adversary prevents the classifier from
relying too heavily on features which induce a metric too dissimilar to the `2 metric; the strength of the
adversary then allows for a tradeoff between the strength of the enforced prior, and the strength of the
data-dependent features.

Robustness and accuracy. Note that in the setting described so far, robustness can be at odds with ac-
curacy since robust training prevents us from learning the most accurate classifier (a similar conclusion is
drawn from the model of Tsipras et al. [Tsi+19]). However, we note that there are very similar settings
where non-robust features manifest themselves in the same way, yet a classifier with perfect robustness
and accuracy is still attainable. Concretely, consider the distributions pictured in Figure 13 in Appendix
D.8. It is straightforward to show that while there are many perfectly accurate classifiers, any standard loss
function will learn an accurate yet non-robust classifier. Only when robust training is employed does the
classifier learn a perfectly accurate and perfectly robust decision boundary.

5 Related Work

Several models for explaining adversarial examples have been proposed in prior work, utilizing ideas rang-
ing from finite-sample overfitting to high-dimensional statistical phenomena [Gil+18; FFF18; For+19; TG16;
Sha+19a; MDM18; Sha+19b; GSS15; BPR18]. The key differentiating aspect of our model is that adversar-
ial perturbations arise as well-generalizing, yet brittle, features, rather than statistical anomalies or effects of
poor statistical concentration. In particular, adversarial vulnerability does not stem from using a specific
model class or a specific training method, since standard training on the “robustified” data distribution of
Section 3.1 leads to robust models. At the same time, as shown in Section 3.2, these non-robust features are
sufficient to learn a good standard classifier. We discuss the connection between our model and others in
detail in Appendix A. We discuss additional related work in Appendix B.

6 Conclusion

In this work, we cast the phenomenon of adversarial examples as a natural consequence of the presence of
highly predictive but non-robust features in standard ML datasets. We provide support for this hypothesis by
explicitly disentangling robust and non-robust features in standard datasets, as well as showing that non-
robust features alone are sufficient for good generalization. Finally, we study these phenomena in more
detail in a theoretical setting where we can rigorously study adversarial vulnerability, robust training, and
gradient alignment.

Our findings prompt us to view adversarial examples as a fundamentally human phenomenon. In par-
ticular, we should not be surprised that classifiers exploit highly predictive features that happen to be
non-robust under a human-selected notion of similarity, given such features exist in real-world datasets.
In the same manner, from the perspective of interpretability, as long as models rely on these non-robust
features, we cannot expect to have model explanations that are both human-meaningful and faithful to

10

the models themselves. Overall, attaining models that are robust and interpretable will require explicitly
encoding human priors into the training process.

References

[ACW18] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated Gradients Give a False
Sense of Security: Circumventing Defenses to Adversarial Examples”. In: International Confer-
ence on Machine Learning (ICML). 2018.

[Ath+18] Anish Athalye et al. “Synthesizing Robust Adversarial Examples”. In: International Conference
on Machine Learning (ICML). 2018.

[BCNM06] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model compression”. In:
International Conference on Knowledge Discovery and Data Mining (KDD). 2006.

[BPR18] Sébastien Bubeck, Eric Price, and Ilya Razenshteyn. “Adversarial examples from computa-
tional constraints”. In: arXiv preprint arXiv:1805.10204. 2018.

[Car+19] Nicholas Carlini et al. “On Evaluating Adversarial Robustness”. In: ArXiv preprint arXiv:1902.06705.
2019.

[CRK19] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified adversarial robustness via ran-
domized smoothing”. In: arXiv preprint arXiv:1902.02918. 2019.

[CRP19] Zachary Charles, Harrison Rosenberg, and Dimitris Papailiopoulos. “A Geometric Perspec-
tive on the Transferability of Adversarial Directions”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2019.

[CW17a] Nicholas Carlini and David Wagner. “Adversarial Examples Are Not Easily Detected: Bypass-
ing Ten Detection Methods”. In: Workshop on Artificial Intelligence and Security (AISec). 2017.

[CW17b] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neural networks”.
In: Symposium on Security and Privacy (SP). 2017.

[Dan67] John M. Danskin. The Theory of Max-Min and its Application to Weapons Allocation Problems. 1967.

[Das+19] Constantinos Daskalakis et al. “Efficient Statistics, in High Dimensions, from Truncated Sam-
ples”. In: Foundations of Computer Science (FOCS). 2019.

[Din+19] Gavin Weiguang Ding et al. “On the Sensitivity of Adversarial Robustness to Input Data Dis-
tributions”. In: International Conference on Learning Representations. 2019.

[Eng+19] Logan Engstrom et al. “A Rotation and a Translation Suffice: Fooling CNNs with Simple Trans-
formations”. In: International Conference on Machine Learning (ICML). 2019.

[Erh+09] Dumitru Erhan et al. “Visualizing higher-layer features of a deep network”. In: (2009).

[FFF18] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. “Adversarial vulnerability for any classi-
fier”. In: Advances in Neural Information Processing Systems (NeuRIPS). 2018.

[FMDF16] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. “Robustness of clas-
sifiers: from adversarial to random noise”. In: Advances in Neural Information Processing Systems.
2016.

[For+19] Nic Ford et al. “Adversarial Examples Are a Natural Consequence of Test Error in Noise”. In:
arXiv preprint arXiv:1901.10513. 2019.

[Fur+18] Tommaso Furlanello et al. “Born-Again Neural Networks”. In: International Conference on Ma-
chine Learning (ICML). 2018.

[Gei+19] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness.” In: International Conference on Learning Representations.
2019.

[Gil+18] Justin Gilmer et al. “Adversarial spheres”. In: Workshop of International Conference on Learning
Representations (ICLR). 2018.

11

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Ad-
versarial Examples”. In: International Conference on Learning Representations (ICLR). 2015.

[HD19] Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network Robustness to
Common Corruptions and Surface Variations”. In: International Conference on Learning Repre-
sentations (ICLR). 2019.

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2016.

[He+17] Warren He et al. “Adversarial example defense: Ensembles of weak defenses are not strong”.
In: USENIX Workshop on Offensive Technologies (WOOT). 2017.

[HVD14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a Neural Net-
work”. In: Neural Information Processing Systems (NeurIPS) Deep Learning Workshop. 2014.

[JLT18] Saumya Jetley, Nicholas Lord, and Philip Torr. “With friends like these, who needs adver-
saries?” In: Advances in Neural Information Processing Systems (NeurIPS). 2018.

[Kri09] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: Technical re-
port. 2009.

[KSJ19] Beomsu Kim, Junghoon Seo, and Taegyun Jeon. “Bridging Adversarial Robustness and Gra-
dient Interpretability”. In: International Conference on Learning Representations Workshop on Safe
Machine Learning (ICLR SafeML). 2019.

[Lec+19] Mathias Lecuyer et al. “Certified robustness to adversarial examples with differential privacy”.
In: Symposium on Security and Privacy (SP). 2019.

[Liu+17] Yanpei Liu et al. “Delving into Transferable Adversarial Examples and Black-box Attacks”. In:
International Conference on Learning Representations (ICLR). 2017.

[LM00] Beatrice Laurent and Pascal Massart. “Adaptive estimation of a quadratic functional by model
selection”. In: Annals of Statistics. 2000.

[Mad+18] Aleksander Madry et al. “Towards deep learning models resistant to adversarial attacks”. In:
International Conference on Learning Representations (ICLR). 2018.

[MD+17] Seyed-Mohsen Moosavi-Dezfooli et al. “Universal adversarial perturbations”. In: conference on
computer vision and pattern recognition (CVPR). 2017.

[MDM18] Saeed Mahloujifar, Dimitrios I Diochnos, and Mohammad Mahmoody. “The curse of concen-
tration in robust learning: Evasion and poisoning attacks from concentration of measure”. In:
AAAI Conference on Artificial Intelligence (AAAI). 2018.

[MV15] Aravindh Mahendran and Andrea Vedaldi. “Understanding deep image representations by
inverting them”. In: conference on computer vision and pattern recognition (CVPR). 2015.

[Nak19] Preetum Nakkiran. “Adversarial robustness may be at odds with simplicity”. In: arXiv preprint
arXiv:1901.00532. 2019.

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visualization”. In: Distill.
2017.

[Pap+17] Nicolas Papernot et al. “Practical black-box attacks against machine learning”. In: Asia Confer-
ence on Computer and Communications Security. 2017.

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in Machine Learn-
ing: from Phenomena to Black-box Attacks using Adversarial Samples”. In: ArXiv preprint
arXiv:1605.07277. 2016.

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses against adversarial
examples”. In: International Conference on Learning Representations (ICLR). 2018.

[Rus+15] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Interna-
tional Journal of Computer Vision (IJCV). 2015.

[Sch+18] Ludwig Schmidt et al. “Adversarially Robust Generalization Requires More Data”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2018.

12

[Sha+19a] Ali Shafahi et al. “Are adversarial examples inevitable?” In: International Conference on Learning
Representations (ICLR). 2019.

[Sha+19b] Adi Shamir et al. “A Simple Explanation for the Existence of Adversarial Examples with Small
Hamming Distance”. In: arXiv preprint arXiv:1901.10861. 2019.

[SHS19] David Stutz, Matthias Hein, and Bernt Schiele. “Disentangling Adversarial Robustness and
Generalization”. In: Computer Vision and Pattern Recognition (CVPR). 2019.

[Sug+19] Arun Sai Suggala et al. “Revisiting Adversarial Risk”. In: onference on Artificial Intelligence and
Statistics (AISTATS). 2019.

[Sze+14] Christian Szegedy et al. “Intriguing properties of neural networks”. In: International Conference
on Learning Representations (ICLR). 2014.

[TG16] Thomas Tanay and Lewis Griffin. “A Boundary Tilting Perspective on the Phenomenon of
Adversarial Examples”. In: ArXiv preprint arXiv:1608.07690. 2016.

[Tra+17] Florian Tramer et al. “The Space of Transferable Adversarial Examples”. In: ArXiv preprint
arXiv:1704.03453. 2017.

[Tsi+19] Dimitris Tsipras et al. “Robustness May Be at Odds with Accuracy”. In: International Conference
on Learning Representations (ICLR). 2019.

[Ues+18] Jonathan Uesato et al. “Adversarial Risk and the Dangers of Evaluating Against Weak At-
tacks”. In: International Conference on Machine Learning (ICML). 2018.

[Wan+18] Tongzhou Wang et al. “Dataset Distillation”. In: ArXiv preprint arXiv:1811.10959. 2018.

[WK18] Eric Wong and J Zico Kolter. “Provable defenses against adversarial examples via the convex
outer adversarial polytope”. In: International Conference on Machine Learning (ICML). 2018.

[Xia+19] Kai Y. Xiao et al. “Training for Faster Adversarial Robustness Verification via Inducing ReLU
Stability”. In: International Conference on Learning Representations (ICLR). 2019.

[Zou+18] Haosheng Zou et al. “Geometric Universality of Adversarial Examples in Deep Learning”. In:
Geometry in Machine Learning ICML Workshop (GIML). 2018.

13

A Connections to and Disambiguation from Other Models

Here, we describe other models for adversarial examples and how they relate to the model we present in
this paper.

Concentration of measure in high-dimensions. An orthogonal line of work [Gil+18; FFF18; MDM18;
Sha+19a], argues that the high dimensionality of the input space can present fundamental barriers on clas-
sifier robustness. At a high level, one can show that, for certain data distributions, any decision boundary
will be close to a large fraction of inputs and hence no classifier can be robust against small perturbations.
While there might exist such fundamental barriers to robustly classifying standard datasets, this model
cannot fully explain the situation observed in practice, where one can train (reasonably) robust classifiers
on standard datasets [Mad+18; RSL18; WK18; Xia+19; CRK19].

Insufficient data. Schmidt et al. [Sch+18] propose a theoretical model under which a single sample is suf-
ficient to learn a good, yet non-robust classifier, whereas learning a good robust classifier requires O(

√
d)

samples. Under this model, adversarial examples arise due to insufficient information about the true data
distribution. However, unless the adversary is strong enough (in which case no robust classifier exists),
adversarial inputs cannot be utilized as inputs of the opposite class (as done in our experiments in Sec-
tion 3.2). We note that our model does not explicitly contradict the main thesis of Schmidt et al. [Sch+18],
as the sample complexity of robust generalization is orthogonal to our work.

Boundary Tilting. Tanay and Griffin [TG16] introduce the “boundary tilting” model for adversarial ex-
amples, and suggest that adversarial examples are a product of over-fitting. In particular, the model conjec-
tures that “adversarial examples are possible because the class boundary extends beyond the submanifold
of sample data and can be—under certain circumstances—lying close to it.” Consequently, the authors sug-
gest that mitigating adversarial examples may be a matter of regularization and preventing finite-sample
overfitting. In contrast, our empirical results in Section 3.2 suggest that adversarial inputs consist of features
inherent to the data distribution, since they can encode generalizing information about the target class.

Inspired by this hypothesis and concurrently to our work, Kim, Seo, and Jeon [KSJ19] present a simple
classification task comprised of two Gaussian distributions in two dimensions. They experimentally show
that the decision boundary tends to better align with the vector between the two means for robust models.
This is a special case of our theoretical results in Section 4. (Note that this exact statement is not true beyond
two dimensions, as discussed in Section 4.)

Test Error in Noise. Fawzi, Moosavi-Dezfooli, and Frossard [FMDF16] and Ford et al. [For+19] argue that
the adversarial robustness of a classifier can be directly connected to its robustness under (appropriately
scaled) random noise. While this constitutes a natural explanation of adversarial vulnerability given the
classifier robustness to noise, these works do not attempt to justify the source of the latter.

At the same time, recent work [Lec+19; CRK19; For+19] utilizes random noise during training or testing
to construct adversarially robust classifiers. In the context of our framework, we can expect non-robust
features to be more sensitive to noise. Hence a classifier that is robust noise is more likely to ignore non-
robust feature hence being more robust overall.

Local Linearity. Goodfellow, Shlens, and Szegedy [GSS15] suggest that the local linearity of DNNs is
largely responsible for the existence of small adversarial perturbations. While this conjecture is supported
by the effectiveness of adversarial attacks exploiting local linearity (e.g., FGSM [GSS15]), it is not sufficient
to fully characterize the phenomena observed in practice. In particular, there exist adversarial examples
that violate the local linearity of the classifier [Mad+18], while classifiers that are less linear do not exhibit
greater robustness [ACW18].

Piecewise-linear decision boundaries. Shamir et al. [Sha+19b] prove that the geometric structure of the
classifier’s decision boundaries can lead to sparse adversarial perturbations. However, this result does not

14

take into account the distance to the decision boundary along these direction or feasibility constraints on
the input domain. As a result, it cannot meaningfully distinguish between classifiers that are brittle to small
adversarial perturbations and classifiers that are moderately robust.

Theoretical constructions which incidentally exploit non-robust features. Bubeck, Price, and Razen-
shteyn [BPR18] and Nakkiran [Nak19] propose theoretical models where the barrier to learning robust
classifiers is, respectively, due to computational constraints or model complexity. In order to construct dis-
tributions that admit accurate yet non-robust classifiers they (implicitly) utilize the concept of non-robust
features. Namely, they add a low-magnitude signal to each input that encodes the true label. This allows a
classifier to achieve perfect standard accuracy, but cannot be utilized in an adversarial setting as this signal
is susceptible to small adversarial perturbations.

B Additional Related Work

We describe previously proposed models for the existence of adversarial examples in the previous section.
Here we discuss other work that is methodologically or conceptually similar to ours.

Distillation. The experiments performed in Section 3.1 can be seen as a form of distillation. There is a line
of work, known as model distillation [HVD14; Fur+18; BCNM06], where the goal is to train a new model
to mimic another already trained model. This is typically achieved by adding some regularization terms to
the loss in order to encourage the two models to be similar, often replacing training labels with some other
target based on the already trained model. While it might be possible to successfully distill a robust model
using these methods, our goal was to achieve it by only modifying the training set (leaving the training pro-
cess unchanged), hence demonstrating that adversarial vulnerability is mainly a property of the dataset.
Closer to our work is dataset distillation [Wan+18] which considers the problem of reconstructing a clas-
sifier from an alternate dataset much smaller than the original training set. This method aims to produce
inputs that directly encode the weights of the already trained model by ensuring that the classifier’s gra-
dient with respect to these inputs approximates the desired weights. (As a result, the inputs constructed
do not resemble natural inputs.) This approach is orthogonal to our goal since we are not interested in
encoding the particular weights into the dataset but rather in imposing a structure to its features.

Adversarial Transferabiliy. In our work, we posit that a potentially natural consequence of the existence
of non-robust features is adversarial transferability [Pap+17; Liu+17; PMG16]. A recent line of work has
considered this phenomenon from a theoretical perspective, confined to simple models, or unbounded per-
turbations [CRP19; Zou+18]. Tramer et al. [Tra+17] study transferability empirically, by finding adversarial
subspaces, (orthogonal vectors whose linear combinations are adversarial perturbations). The authors find
that there is a significant overlap in the adversarial subspaces between different models, and identify this
as a source of transferability. In our work, we provide a potential reason for this overlap—these directions
correspond to non-robust features utilized by models in a similar manner.

Universal Adversarial Perturbations Moosavi-Dezfooli et al. [MD+17] construct perturbations that can
cause misclassification when applied to multiple different inputs. More recently, Jetley, Lord, and Torr
[JLT18] discover input patterns that are meaningless to humans and can induce misclassification, while
at the same time being essential for standard classification. These findings can be naturally cast into our
framework by considering these patterns as non-robust features, providing further evidence about their
pervasiveness.

Manipulating dataset features Ding et al. [Din+19] perform synthetic transformations on the dataset (e.g.,
image saturation) and study the performance of models on the transformed dataset under standard and ro-
bust training. While this can be seen as a method of restricting the features available to the model during
training, it is unclear how well these models would perform on the standard test set. Geirhos et al. [Gei+19]

15

aim to quantify the relative dependence of standard models on shape and texture information of the in-
put. They introduce a version of ImageNet where texture information has been removed and observe an
improvement to certain corruptions.

16

C Experimental Setup

C.1 Datasets

For our experimental analysis, we use the CIFAR-10 [Kri09] and (restricted) ImageNet [Rus+15] datasets.
Attaining robust models for the complete ImageNet dataset is known to be a challenging problem, both
due to the hardness of the learning problem itself, as well as the computational complexity. We thus restrict
our focus to a subset of the dataset which we denote as restricted ImageNet. To this end, we group together
semantically similar classes from ImageNet into 9 super-classes shown in Table 2. We train and evaluate
only on examples corresponding to these classes.

Class Corresponding ImageNet Classes

“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

Table 2: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

C.2 Models

We use the ResNet-50 architecture for our baseline standard and adversarially trained classifiers on CIFAR-
10 and restricted ImageNet. For each model, we grid search over three learning rates (0.1, 0.01, 0.05), two
batch sizes (128, 256) including/not including a learning rate drop (a single order of magnitude) and data
augmentation. We use the standard training parameters for the remaining parameters. The hyperparame-
ters used for each model are given in Table 3.

Dataset LR Batch Size LR Drop Data Aug. Momentum Weight Decay

D̂R (CIFAR) 0.1 128 Yes Yes 0.9 5 · 10−4

D̂R (Restricted ImageNet) 0.01 128 No Yes 0.9 5 · 10−4

D̂NR (CIFAR) 0.1 128 Yes Yes 0.9 5 · 10−4

D̂rand (CIFAR) 0.01 128 Yes Yes 0.9 5 · 10−4

D̂rand (Restricted ImageNet) 0.01 256 No No 0.9 5 · 10−4

D̂det (CIFAR) 0.1 128 Yes No 0.9 5 · 10−4

D̂det (Restricted ImageNet) 0.05 256 No No 0.9 5 · 10−4

Table 3: Hyperparameters for the models trained in the main paper. All hyperparameters were obtained
through a grid search.

17

C.3 Adversarial training

To obtain robust classifiers, we employ the adversarial training methodology proposed in [Mad+18]. Specif-
ically, we train against a projected gradient descent (PGD) adversary constrained in `2-norm starting from
the original image. Following Madry et al. [Mad+18] we normalize the gradient at each step of PGD to
ensure that we move a fixed distance in `2-norm per step. Unless otherwise specified, we use the values of
ε provided in Table 4 to train/evaluate our models. We used 7 steps of PGD with a step size of ε/5.

Adversary CIFAR-10 Restricted Imagenet

`2 0.5 3

Table 4: Value of ε used for `2 adversarial training/evaluation of each dataset.

C.4 Constructing a Robust Dataset

In Section 3.1, we describe a procedure to construct a dataset that contains features relevant only to a given
(standard/robust) model. To do so, we optimize the training objective in (6). Unless otherwise specified,
we initialize xr as a different randomly chosen sample from the training set. (For the sake of completeness,
we also try initializing with a Gaussian noise instead as shown in Table 7.) We then perform normalized
gradient descent (`2-norm of gradient is fixed to be constant at each step). At each step we clip the input
xr to in the [0, 1] range so as to ensure that it is a valid image. Details on the optimization procedure are
shown in Table 5. We provide the pseudocode for the construction in Figure 5.

GETROBUSTDATASET(D)

1. CR ← ADVERSARIALTRAINING(D)
gR ←mapping learned by CR from the input to the representation layer

2. DR ← {}
3. For (x, y) ∈ D

x′ ∼ D

xR ← arg minz∈[0,1]d ‖gR(z)− gR(x)‖2 # Solved using `2-PGD starting from x′

DR ← DR
⋃ {(xR, y)}

4. Return DR

Figure 5: Algorithm to construct a “robust” dataset, by restricting to features used by a robust model.

CIFAR-10 Restricted Imagenet

step size 0.1 1
iterations 1000 2000

Table 5: Parameters used for optimization procedure to construct dataset in Section 3.1.

18

C.5 Non-robust features suffice for standard classification

To construct the dataset as described in Section 3.2, we use the standard projected gradient descent (PGD)
procedure described in [Mad+18] to construct an adversarial example for a given input from the dataset (7).
Perturbations are constrained in `2-norm while each PGD step is normalized to a fixed step size. The details
for our PGD setup are described in Table 6. We provide pseudocode in Figure 6.

GETNONROBUSTDATASET(D, ε)

1. DNR ← {}
2. C ← STANDARDTRAINING(D)

3. For (x, y) ∈ D

t uar∼ [C] # or t← (y + 1) mod C

xNR ← min||x′−x||≤ε LC(x′, t) # Solved using `2 PGD

DNR ← DNR
⋃ {(xNR, t)}

4. Return DNR

Figure 6: Algorithm to construct a dataset where input-label association is based entirely on non-robust
features.

Attack Parameters CIFAR-10 Restricted Imagenet

ε 0.5 3
step size 0.1 0.1
iterations 100 100

Table 6: Projected gradient descent parameters used to construct constrained adversarial examples in Sec-
tion 3.2.

19

D Omitted Experiments and Figures

D.1 Detailed evaluation of models trained on “robust” dataset

In Section 3.1, we generate a “robust” training set by restricting the dataset to only contain features relevant
to a robust model (robust dataset) or a standard model (non-robust dataset). This is performed by choos-
ing either a random input from the training set or random noise11 and then performing the optimization
procedure described in (6). The performance of these classifiers along with various baselines is shown in
Table 7. We observe that while the robust dataset constructed from noise resembles the original, the corre-
sponding non-robust does not (Figure 7). This also leads to suboptimal performance of classifiers trained
on this dataset (only 46% standard accuracy) potentially due to a distributional shift.

Robust Accuracy
Model Accuracy ε = 0.25 ε = 0.5

Standard Training 95.25 % 4.49% 0.0%
Robust Training 90.83% 82.48% 70.90%

Trained on non-robust dataset (constructed from images) 87.68% 0.82% 0.0%
Trained on non-robust dataset (constructed from noise) 45.60% 1.50% 0.0%
Trained on robust dataset (constructed from images) 85.40% 48.20 % 21.85%
Trained on robust dataset (constructed from noise) 84.10% 48.27 % 29.40%

Table 7: Standard and robust classification performance on the CIFAR-10 test set of: an (i) ERM classifier;
(ii) ERM classifier trained on a dataset obtained by distilling features relevant to ERM classifier in (i); (iii)
adversarially trained classifier (ε = 0.5); (iv) ERM classifier trained on dataset obtained by distilling features
used by robust classifier in (iii). Simply restricting the set of available features during ERM to features used
by a standard model yields non-trivial robust accuracy.

Or
ig

in
al

Deer Truck Cat Bird Ship

No
n-

Ro
bu

st
Ro

bu
st

Figure 7: Robust and non-robust datasets for CIFAR-10 when the process starts from noise (as opposed to
random images as in Figure 2a).

11We use 10k steps to construct the dataset from noise, instead to using 1k steps done when the input is a different training set image
(cf. Table 5).

20

D.2 Adversarial evaluation

To verify the robustness of our classifiers trained on the ‘robust” dataset, we evaluate them with strong
attacks [Car+19]. In particular, we try up to 2500 steps of projected gradient descent (PGD), increasing
steps until the accuracy plateaus, and also try the CW-`2 loss function [CW17b] with 1000 steps. For each
attack we search over step size. We find that over all attacks and step sizes, the accuracy of the model does
not drop by more than 2%, and plateaus at 48.27% for both PGD and CW-`2 (the value given in Figure 2).
We show a plot of accuracy in terms of the number of PGD steps used in Figure 8.

0 500 1000 1500 2000 2500
Number of PGD steps

0

20

40

60

80

100

Ad
ve

rs
ar

ia
l a

cc
ur

ac
y

to

=
0.

25
 (%

)

Figure 8: Robust accuracy as a function of the number of PGD steps used to generate the attack. The
accuracy plateaus at 48.27%.

21

D.3 Performance of “robust” training and test set

In Section 3.1, we observe that an ERM classifier trained on a “robust” training dataset D̂R (obtained by
restricting features to those relevant to a robust model) attains non-trivial robustness (cf. Figure 1 and
Table 7). In Table 8, we evaluate the adversarial accuracy of the model on the corresponding robust training
set (the samples which the classifier was trained on) and test set (unseen samples from D̂R, based on the test
set). We find that the drop in robustness comes from a combination of generalization gap (the robustness
on the D̂R test set is worse than it is on the robust training set) and distributional shift (the model performs
better on the robust test set consisting of unseen samples from D̂R than on the standard test set containing
unseen samples from D).

Dataset Robust Accuracy

Robust training set 77.33%
Robust test set 62.49%
Standard test set 48.27%

Table 8: Performance of model trained on the robust dataset on the robust training and test sets as well as
the standard CIFAR-10 test set. We observe that the drop in robust accuracy stems from a combination of
generalization gap and distributional shift. The adversary is constrained to ε = 0.25 in `2-norm.

D.4 Classification based on non-robust features

Figure 9 shows sample images from D, D̂rand and D̂det constructed using a standard (non-robust) ERM
classifier, and an adversarially trained (robust) classifier.

Or
ig

in
al

Dog Cat Automobile Horse Truck

ER
M

Ro
bu

st

(a) D̂rand

Or
ig

in
al

Deer Ship Frog Truck Bird

ER
M

Ro
bu

st

(b) D̂det

Figure 9: Random samples from datasets where the input-label correlation is entirely based on non-robust
features. Samples are generated by performing small adversarial perturbations using either random (D̂rand)
or deterministic (D̂det) label-target mappings for every sample in the training set. Each image shows: top:
original; middle: adversarial perturbations using a standard ERM-trained classifier; bottom: adversarial per-
turbations using a robust classifier (adversarially trained against ε = 0.5).

In Table 9, we repeat the experiments in Table 1 based on datasets constructed using a robust model.
Note that using a robust model to generate the D̂det and D̂rand datasets will not result in non-robust features
that are strongly predictive of t (since the prediction of the classifier will not change). Thus, training a model
on these datasets leads to poor accuracy on the standard test set from D.

Observe from Figure 10 that models trained on datasets derived from the robust model show a decline
in test accuracy as training progresses. In Table 9, the accuracy numbers reported correspond to the last

22

iteration, and not the best performance. This is because we have no way to cross-validate in a meaningful
way as the validation set itself comes from D̂rand or D̂det, and not from the true data distribution D. Thus,
validation accuracy will not be predictive of the true test accuracy, and thus will not help determine when
to early stop.

Model used
to construct dataset

Dataset used in training

D D̂rand D̂det

Robust 95.3% 25.2 % 5.8%
Standard 95.3% 63.3 % 43.7%

Table 9: Repeating the experiments of Table 1 using a robust model to construct the datasets D, D̂rand and
D̂det. Results in Table 1 are reiterated for comparison.

23

D.5 Accuracy curves

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using ERM-trained Model
Train
Test

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using Robust Model
Train
Test

(a) Trained using D̂rand training set

25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using ERM-trained Model

Train
Test

20 40 60 80 100 120 140 160 180
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Using Robust Model
Train
Test

(b) Trained using D̂det training set

Figure 10: Test accuracy on D of standard classifiers trained on datasets where input-label correlation is
based solely on non-robust features as in Section 3.2. The datasets are constructed using either a non-
robust/standard model (left column) or a robust model (right column). The labels used are either random
(D̂rand; top row) or correspond to a deterministic permutation (D̂det; bottom row).

24

D.6 Performance of ERM classifiers on relabeled test set

In Table 10), we evaluate the performance of classifiers trained on D̂det on both the original test set drawn
from D, and the test set relabelled using t(y) = (y + 1) mod C. Observe that the classifier trained on
D̂det constructed using a robust model actually ends up learning permuted labels based on robust features
(indicated by high test accuracy on the relabelled test set).

Model used to construct
training dataset for D̂det

Dataset used in testing

D relabelled-D
Standard 43.7% 16.2%
Robust 5.8% 65.5%

Table 10: Performance of classifiers trained using D̂det training set constructed using either standard or
robust models. The classifiers are evaluated both on the standard test set from D and the test set relabeled
using t(y) = (y + 1) mod C. We observe that using a robust model for the construction results in a model
that largely predicts the permutation of labels, indicating that the dataset does not have strongly predictive
non-robust features.

D.7 Omitted Results for Restricted ImageNet

“dog’’ “primate’’ “insect’’ “crab’’ “bird’’

D
D̂ R

Figure 11: Repeating the experiments shown in Figure 2 for the Restricted ImageNet dataset. Sample
images from the resulting dataset.

Std Training
 using

Adv Training
 using

Std Training
 using R

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
on

 (%

)

Std accuracy Adv accuracy (= 0.5)

Figure 12: Repeating the experiments shown in Figure 2 for the Restricted ImageNet dataset. Standard and
robust accuracy of models trained on these datasets.

25

D.8 Robustness vs. Accuracy

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

>

/2

ERM Classifier
Robust + Accurate Classifier

Figure 13: An example where adversarial vulnerability can arise from ERM training on any standard loss
function due to non-robust features (the green line shows the ERM-learned decision boundary). There
exists, however, a classifier that is both perfectly robust and accurate, resulting from robust training, which
forces the classifier to ignore the x2 feature despite its predictiveness.

26

E Gaussian MLE under Adversarial Perturbation

In this section, we develop a framework for studying non-robust features by studying the problem of max-
imum likelihood classification between two Gaussian distributions. We first recall the setup of the problem,
then present the main theorems from Section 4. First we build the techniques necessary for their proofs.

E.1 Setup

We consider the setup where a learner receives labeled samples from two distributions, N (µ∗, Σ∗), and
N (−µ∗, Σ∗). The learner’s goal is to be able to classify new samples as being drawn from D1 or D2 accord-
ing to a maximum likelihood (MLE) rule.

A simple coupling argument demonstrates that this problem can actually be reduced to learning the
parameters µ̂, Σ̂ of a single GaussianN (−µ∗, Σ∗), and then employing a linear classifier with weight Σ̂−1µ̂.
In the standard setting, maximum likelihoods estimation learns the true parameters, µ∗ and Σ∗, and thus
the learned classification rule is C(x) = 1{x>Σ−1µ > 0}.

In this work, we consider the problem of adversarially robust maximum likelihood estimation. In partic-
ular, rather than simply being asked to classify samples, the learner will be asked to classify adversarially
perturbed samples x + δ, where δ ∈ ∆ is chosen to maximize the loss of the learner. Our goal is to derive the
parameters µ, Σ corresponding to an adversarially robust maximum likelihood estimate of the parameters
of N (µ∗, Σ∗). Note that since we have access to Σ∗ (indeed, the learner can just run non-robust MLE to get
access), we work in the space where Σ∗ is a diagonal matrix, and we restrict the learned covariance Σ to the
set of diagonal matrices.

Notation. We denote the parameters of the sampled Gaussian by µ∗ ∈ Rd, and Σ∗ ∈ {diag(u)|u ∈ Rd}.
We use σmin(X) to represent the smallest eigenvalue of a square matrix X, and `(·; x) to represent the
Gaussian negative log-likelihood for a single sample x. For convenience, we often use v = x − µ, and
R = ‖µ∗‖. We also define the � operator to represent the vectorization of the diagonal of a matrix. In
particular, for a matrix X ∈ Rd×d, we have that X� = v ∈ Rd if vi = Xii.

E.2 Outline and Key Results

We focus on the case where ∆ = B2(ε) for some ε > 0, i.e. the `2 ball, corresponding to the following
minimax problem:

min
µ,Σ

Ex∼N (µ∗ ,Σ∗)

[
max

δ:‖δ‖=ε
`(µ, Σ; x + δ)

]
(13)

We first derive the optimal adversarial perturbation for this setting (Section E.3.1), and prove Theorem 1
(Section E.3.2). We then propose an alternate problem, in which the adversary picks a linear operator to
be applied to a fixed vector, rather than picking a specific perturbation vector (Section E.3.3). We argue
via Gaussian concentration that the alternate problem is indeed reflective of the original model (and in
particular, the two become equivalent as d→ ∞). In particular, we propose studying the following in place
of (13):

min
µ,Σ

max
M∈M

Ex∼N (µ∗ ,Σ∗) [`(µ, Σ; x + M(x− µ))] (14)

whereM =
{

M ∈ Rd×d : Mij = 0 ∀ i 6= j, Ex∼N (µ∗ ,Σ∗)

[
‖Mv‖2

2

]
= ε2

}
.

Our goal is to characterize the behavior of the robustly learned covariance Σ in terms of the true covari-
ance matrix Σ∗ and the perturbation budget ε. The proof is through Danskin’s Theorem, which allows us
to use any maximizer of the inner problem M∗ in computing the subgradient of the inner minimization.
After showing the applicability of Danskin’s Theorem (Section E.3.4) and then applying it (Section E.3.5) to
prove our main results (Section E.3.7). Our three main results, which we prove in the following section, are
presented below.

First, we consider a simplified version of (13), in which the adversary solves a maximization with a fixed
Lagrangian penalty, rather than a hard `2 constraint. In this setting, we show that the loss contributed by

27

the adversary corresponds to a misalignment between the data metric (the Mahalanobis distance, induced
by Σ−1), and the `2 metric:

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary whose perturbation is deter-
mined by the “Lagrangian penalty” form of (12), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

where C is a constant trading off NLL minimization and the adversarial constraint. Then, the adversarial loss Ladv
incurred by the non-robustly learned (µ, Σ) is given by:

Ladv(Θ)−L(Θ) = tr
[(

I + (C · Σ∗ − I)−1
)2
]
− d,

and, for a fixed tr(Σ∗) = k the above is minimized by Σ∗ = k
d I.

We then return to studying (14), where we provide upper and lower bounds on the learned robust covari-
ance matrix Σ:

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ∗, i.e. the true mean is learned.
For the robust covariance Σr, there exists an ε0 > 0, such that for any ε ∈ [0, ε0),

Σr =
1
2

Σ∗ +
1
λ
· I +

√
1
λ
· Σ∗ +

1
4

Σ2∗, where Ω

(
1 + ε1/2

ε1/2 + ε3/2

)
≤ λ ≤ O

(
1 + ε1/2

ε1/2

)
.

Finally, we show that in the worst case over mean vectors µ∗, the gradient of the adversarial robust classifier
aligns more with the inter-class vector:

Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on the linear separator induced
by standard and `2-robust maximum likelihood classification, respectively. The maximum angle formed between the
gradient of the classifier (wrt input) and the vector connecting the classes can be smaller for the robust model:

min
µ

〈µ,∇x fr(x)〉
‖µ‖ · ‖∇x fr(x)‖ > min

µ

〈µ,∇x f (x)〉
‖µ‖ · ‖∇x f (x)‖ .

E.3 Proofs

In the first section, we have shown that the classification between two Gaussian distributions with identical
covariance matrices centered at µ∗ and −µ∗ can in fact be reduced to learning the parameters of a single
one of these distributions.

Thus, in the standard setting, our goal is to solve the following problem:

min
µ,Σ

Ex∼N (µ∗ ,Σ∗) [`(µ, Σ; x)] := min
µ,Σ

Ex∼N (µ∗ ,Σ∗) [− log (N (µ, Σ; x))] .

Note that in this setting, one can simply find differentiate ` with respect to both µ and Σ, and obtain
closed forms for both (indeed, these closed forms are, unsurprisingly, µ∗ and Σ∗). Here, we consider the
existence of a malicious adversary who is allowed to perturb each sample point x by some δ. The goal of the
adversary is to maximize the same loss that the learner is minimizing.

E.3.1 Motivating example: `2-constrained adversary

We first consider, as a motivating example, an `2-constrained adversary. That is, the adversary is allowed
to perturb each sampled point by δ : ‖δ‖2 = ε. In this case, the minimax problem being solved is the
following:

min
µ,Σ

Ex∼N (µ∗ ,Σ∗)

[
max
‖δ‖=ε

`(µ, Σ; x + δ)

]
. (15)

The following Lemma captures the optimal behaviour of the adversary:

28

Lemma 1. In the minimax problem captured in (15) (and earlier in (13)), the optimal adversarial perturbation δ∗ is
given by

δ∗ =
(

λI − Σ−1
)−1

Σ−1v = (λΣ− I)−1 v, (16)

where v = x− µ, and λ is set such that ‖δ∗‖2 = ε.

Proof. In this context, we can solve the inner maximization problem with Lagrange multipliers. In the
following we write ∆ = B2(ε) for brevity, and discard terms not containing δ as well as constant factors
freely:

arg max
δ∈∆

`(µ, Σ; x + δ)− = arg max
δ∈∆

(x + δ− µ)> Σ−1 (x + δ− µ)

= arg max
δ∈∆

(x− µ)>Σ−1(x− µ) + 2δ>Σ−1(x− µ) + δ>Σ−1δ

= arg max
δ∈∆

δ>Σ−1(x− µ) +
1
2

δ>Σ−1δ. (17)

Now we can solve (17) using the aforementioned Lagrange multipliers. In particular, note that the maxi-
mum of (17) is attained at the boundary of the `2 ball ∆. Thus, we can solve the following system of two
equations to find δ, rewriting the norm constraint as 1

2‖δ‖2
2 = 1

2 ε2:

{
∇δ

(
δ>Σ−1(x− µ) + 1

2 δ>Σ−1δ
)
= λ∇δ

(
‖δ‖2

2 − ε2) =⇒ Σ−1(x− µ) + Σ−1δ = λδ

‖δ‖2
2 = ε2.

(18)

For clarity, we write v = x− µ: then, combining the above, we have that

δ∗ =
(

λI − Σ−1
)−1

Σ−1v = (λΣ− I)−1 v, (19)

our final result for the maximizer of the inner problem, where λ is set according to the norm constraint.

E.3.2 Variant with Fixed Lagrangian (Theorem 1)

To simplify the analysis of Theorem 1, we consider a version of (15) with a fixed Lagrangian penalty, rather
than a norm constraint:

max `(x + δ; y · µ, Σ)− C · ‖δ‖2.

Note then, that by Lemma 1, the optimal perturbation δ∗ is given by

δ∗ = (CΣ− I)−1 .

We now proceed to the proof of Theorem 1.

Theorem 1 (Adversarial vulnerability from misalignment). Consider an adversary whose perturbation is deter-
mined by the “Lagrangian penalty” form of (12), i.e.

max
δ

`(x + δ; y · µ, Σ)− C · ‖δ‖2,

where C is a constant trading off NLL minimization and the adversarial constraint. Then, the adversarial loss Ladv
incurred by the non-robustly learned (µ, Σ) is given by:

Ladv(Θ)−L(Θ) = tr
[(

I + (C · Σ∗ − I)−1
)2
]
− d,

and, for a fixed tr(Σ∗) = k the above is minimized by Σ∗ = k
d I.

29

Proof. We begin by expanding the Gaussian negative log-likelihood for the relaxed problem:

Ladv(Θ)−L(Θ) = Ex∼N (µ∗ ,Σ∗)

[
2 · v> (C · Σ− I)−> Σ−1v + v> (C · Σ− I)−> Σ−1 (C · Σ− I)−1 v

]

= Ex∼N (µ∗ ,Σ∗)

[
2 · v> (C · ΣΣ− Σ)−1 v + v> (C · Σ− I)−> Σ−1 (C · Σ− I)−1 v

]

Recall that we are considering the vulnerability at the MLE parameters µ∗ and Σ∗:

Ladv(Θ)−L(Θ) = Ev∼N (0,I)

[
2 · v>Σ1/2

∗
(

C · Σ2
∗ − Σ∗

)−1
Σ1/2
∗ v

+ v>Σ1/2
∗ (C · Σ∗ − I)−> Σ−1

∗ (C · Σ∗ − I)−1 Σ1/2
∗ v

]

= Ev∼N (0,I)

[
2 · v> (C · Σ∗ − I)−1 v + v>Σ1/2

∗
(

C2Σ3
∗ − 2C · Σ2

∗ + Σ∗
)−1

Σ1/2
∗ v

]

= Ev∼N (0,I)

[
2 · v> (C · Σ∗ − I)−1 v + v> (C · Σ∗ − I)−2 v

]

= Ev∼N (0,I)

[
−‖v‖2

2 + v> Iv + 2 · v> (C · Σ∗ − I)−1 v + v> (C · Σ∗ − I)−2 v
]

= Ev∼N (0,I)

[
−‖v‖2

2 + v>
(

I + (C · Σ∗ − I)−1
)2

v
]

= tr
[(

I + (C · Σ∗ − I)−1
)2
]
− d

This shows the first part of the theorem. It remains to show that for a fixed k = tr(Σ∗), the adversarial risk
is minimized by Σ∗ = k

d I:

min
Σ∗
Ladv(Θ)−L(Θ) = min

Σ∗
tr
[(

I + (C · Σ∗ − I)−1
)2
]

= min
{σi}

d

∑
i=1

(
1 +

1
C · σi − 1

)2
,

where {σi} are the eigenvalues of Σ∗. Now, we have that ∑ σi = k by assumption, so by optimality condi-
tions, we have that Σ∗ minimizes the above if ∇{σi} ∝~1, i.e. if ∇σi = ∇σj for all i, j. Now,

∇σi = −2 ·
(

1 +
1

C · σi − 1

)
· C

(C · σi − 1)2

= −2 · C2 · σi
(C · σi − 1)3 .

Then, by solving analytically, we find that

−2 · C2 · σi
(C · σi − 1)3 = −2 · C2 · σj

(C · σj − 1)3

admits only one real solution, σi = σj. Thus, Σ∗ ∝ I. Scaling to satisfy the trace constraint yields Σ∗ = k
d I,

which concludes the proof.

E.3.3 Real objective

Our motivating example (Section E.3.1) demonstrates that the optimal perturbation for the adversary in the
`2-constrained case is actually a linear function of v, and in particular, that the optimal perturbation can
be expressed as Dv for a diagonal matrix D. Note, however, that the problem posed in (15) is not actually

30

a minimax problem, due to the presence of the expectation between the outer minimization and the inner
maximization. Motivated by this and (19), we define the following robust problem:

min
µ,Σ

max
M∈M

Ex∼N (µ∗ ,Σ∗) [`(µ, Σ; x + Mv)] , (20)

whereM =
{

M ∈ Rd×d : Mij = 0 ∀ i 6= j, Ex∼N (µ∗ ,Σ∗)

[
‖Mv‖2

2

]
= ε2

}
.

First, note that this objective is slightly different from that of (15). In the motivating example, δ is con-
strained to always have ε-norm, and thus is normalizer on a per-sample basis inside of the expectation. In
contrast, here the classifier is concerned with being robust to perturbations that are linear in v, and of ε2

squared norm in expectation.

Note, however, that via the result of Laurent and Massart [LM00] showing strong concentration for the
norms of Gaussian random variables, in high dimensions this bound on expectation has a corresponding
high-probability bound on the norm. In particular, this implies that as d → ∞, ‖Mv‖2 = ε almost surely,
and thus the problem becomes identical to that of (15). We now derive the optimal M for a given (µ, Σ):

Lemma 2. Consider the minimax problem described by (20), i.e.

min
µ,Σ

max
M∈M

Ex∼N (µ∗ ,Σ∗) [`(µ, Σ; x + Mv)] .

Then, the optimal action M∗ of the inner maximization problem is given by

M = (λΣ− I)−1 , (21)

where again λ is set so that M ∈ M.

Proof. We accomplish this in a similar fashion to what was done for δ∗, using Lagrange multipliers:

∇MEx∼N (µ∗ ,Σ∗)

[
v>MΣ−1v +

1
2

v>MΣ−1Mv
]
= λ∇MEx∼N (µ∗ ,Σ∗)

[
‖Mv‖2

2 − ε2
]

Ex∼N (µ∗ ,Σ∗)

[
Σ−1vv> + Σ−1Mvv>

]
= Ex∼N (µ∗ ,Σ∗)

[
λMvv>

]

Σ−1Σ∗ + Σ−1MΣ∗ = λMΣ∗

M = (λΣ− I)−1 ,

where λ is a constant depending on Σ and µ enforcing the expected squared-norm constraint.

Indeed, note that the optimal M for the adversary takes a near-identical form to the optimal δ (19), with the
exception that λ is not sample-dependent but rather varies only with the parameters.

E.3.4 Danskin’s Theorem

The main tool in proving our key results is Danskin’s Theorem [Dan67], a powerful theorem from minimax
optimization which contains the following key result:

Theorem 4 (Danskin’s Theorem). Suppose φ(x, z) : R× Z → R is a continuous function of two arguments,
where Z ⊂ Rm is compact. Define f (x) = maxz∈Z φ(x, z). Then, if for every z ∈ Z, φ(x, z) is convex and
differentiable in x, and ∂φ

∂x is continuous:
The subdifferential of f (x) is given by

∂ f (x) = conv
{

∂φ(x, z)
∂x

: z ∈ Z0(x)
}

,

where conv(·) represents the convex hull operation, and Z0 is the set of maximizers defined as

Z0(x) =
{

z : φ(x, z) = max
z∈Z

φ(x, z)
}

.

31

In short, given a minimax problem of the form minx maxy∈C f (x, y) where C is a compact set, if f (·, y) is
convex for all values of y, then rather than compute the gradient of g(x) := maxy∈C f (x, y), we can simply
find a maximizer y∗ for the current parameter x; Theorem 4 ensures that∇x f (x, y∗) ∈ ∂xg(x). Note thatM
is trivially compact (by the Heine-Borel theorem), and differentiability/continuity follow rather straight-
forwardly from our reparameterization (c.f. (22)), and so it remains to show that the outer minimization is
convex for any fixed M.

Convexity of the outer minimization. Note that even in the standard case (i.e. non-adversarial), the
Gaussian negative log-likelihood is not convex with respect to (µ, Σ). Thus, rather than proving convexity
of this function directly, we employ the parameterization used by [Das+19]: in particular, we write the
problem in terms of T = Σ−1 and m = Σ−1µ. Under this parameterization, we show that the robust
problem is convex for any fixed M.

Lemma 3. Under the aforementioned parameterization of T = Σ−1 and m = Σ−1µ, the following “Gaussian robust
negative log-likelihood” is convex:

Ex∼N (µ∗ ,Σ∗) [`(m, T ; x + Mv)] .

Proof. To prove this, we show that the likelihood is convex even with respect to a single sample x; the
result follows, since a convex combination of convex functions remains convex. We begin by looking at the
likelihood of a single sample x ∼ N (µ∗, Σ∗):

L(µ, Σ; x + M(x− µ)) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)>(I + M)2Σ−1(x− µ)

)

=

1√
(2π)k |Σ|

exp
(
− 1

2 (x− µ)>(I + M)2Σ−1(x− µ)
)

∫
1√

(2π)k |(I+M)−2Σ|
exp

(
− 1

2 (x− µ)>(I + M)2Σ−1(x− µ)
)

=
|I + M|−1 exp

(
− 1

2 x>(I + M)2Σ−1x + µ>(I + M)2Σ−1x
)

∫
exp

(
− 1

2 x>(I + M)2Σ−1x + µ>(I + M)2Σ−1x
)

In terms of the aforementioned T and m, and for convenience defining A = (I + M)2:

`(x) = |A|−1/2 +

(
1
2

x>ATx−m>Ax
)
− log

(∫
exp

(
1
2

x>ATx−m>Ax
))

∇`(x) =
[1

2 (Axx>)�
−Ax

]
−

∫ [1
2 (Axx>)�
−Ax

]
exp

(
1
2 x>ATx−m>Ax

)

∫
exp

(
1
2 x>ATx−m>Ax

)

=

[1
2 (Axx>)�
−Ax

]
−Ez∼N (T−1m,(AT)−1)

[1
2 (Azz>)�
−Az

]
. (22)

From here, following an identical argument to [Das+19] Equation (3.7), we find that

H` = Covz∼N (T−1m,(AT)−1)

[((
− 1

2 AzzT
)
�

z

)
,

((
− 1

2 AzzT
)
�

z

)]
< 0,

i.e. that the log-likelihood is indeed convex with respect to
[

T
m

]
, as desired.

32

E.3.5 Applying Danskin’s Theorem

The previous two parts show that we can indeed apply Danskin’s theorem to the outer minimization, and
in particular that the gradient of f at M = M∗ is in the subdifferential of the outer minimization problem.
We proceed by writing out this gradient explicitly, and then setting it to zero (note that since we have shown
f is convex for all choices of perturbation, we can use the fact that a convex function is globally minimized
⇐⇒ its subgradient contains zero). We continue from above, plugging in (21) for M and using (22) to write
the gradients of ` with respect to T and m.

0 = ∇[T
m

]` = Ex∼N (µ∗ ,Σ∗)

[[1
2 (Axx>)�
−Ax

]
−Ez∼N (T−1m,(AT)−1)

[1
2 (Azz>)�
−Az

]]

= Ex∼N (µ∗ ,Σ∗)

[1
2 (Axx>)�
−Ax

]
−Ez∼N (T−1m,(AT)−1)

[1
2 (Azz>)�
−Az

]

=

[1
2 (AΣ∗)�
−Aµ∗

]
−Ez∼N (T−1m,(AT)−1)

[1
2 (A(AT)−1)�
−AT−1m

]

=

[1
2 AΣ∗
−Aµ∗

]
−
[1

2 A(AT)−1

−AT−1m

]

=

[1
2 AΣ∗ − 1

2 T−1

AT−1m− Aµ∗

]
(23)

Using this fact, we derive an implicit expression for the robust covariance matrix Σ. Note that for the
sake of brevity, we now use M to denote the optimal adversarial perturbation (previously defined as M∗

in (21)). This implicit formulation forms the foundation of the bounds given by our main results.

Lemma 4. The minimax problem discussed throughout this work admits the following (implicit) form of solution:

Σ =
1
λ

I +
1
2

Σ∗ +

√
1
λ

Σ∗ +
1
4

Σ2∗,

where λ is such that M ∈ M, and is thus dependent on Σ.

Proof. Rewriting (23) in the standard parameterization (with respect to µ, Σ) and re-expanding A = (I +
M)2 yields:

0 = ∇[T
m

]` =
[1

2 (I + M)2Σ∗ − 1
2 Σ

(I + M)2µ− (I + M)2µ∗

]

Now, note that the equations involving µ and Σ are completely independent, and thus can be solved
separately. In terms of µ, the relevant system of equations is Aµ − Aµ∗ = 0, where multiplying by the
inverse A gives that

µ = µ∗. (24)

This tells us that the mean learned via `2-robust maximum likelihood estimation is precisely the true mean
of the distribution.

Now, in the same way, we set out to find Σ by solving the relevant system of equations:

Σ−1
∗ = Σ−1(M + I)2. (25)

Now, we make use of the Woodbury Matrix Identity in order to write (I + M) as

I + (λΣ− I)−1 = I +

(
−I −

(
1
λ

Σ−1 − I
)−1

)
= −

(
1
λ

Σ−1 − I
)−1

.

33

Thus, we can revisit (25) as follows:

Σ−1
∗ = Σ−1

(
1
λ

Σ−1 − I
)−2

1
λ2 Σ−1

∗ Σ−2 −
(

2
λ

Σ−1
∗ + I

)
Σ−1 + Σ−1

∗ = 0

1
λ2 Σ−1

∗ −
(

2
λ

Σ−1
∗ + I

)
Σ + Σ−1

∗ Σ2 = 0

We now apply the quadratic formula to get an implicit expression for Σ (implicit since technically λ
depends on Σ):

Σ =

(
2
λ

Σ−1
∗ + I ±

√
4
λ

Σ−1∗ + I

)
1
2

Σ∗

=
1
λ

I +
1
2

Σ∗ +

√
1
λ

Σ∗ +
1
4

Σ2∗. (26)

This concludes the proof.

E.3.6 Bounding λ

We now attempt to characterize the shape of λ as a function of ε. First, we use the fact that E[‖Xv‖2] =
tr(X2) for standard normally-drawn v. Thus, λ is set such that tr(Σ∗M2) = ε, i.e:

∑
i=0

Σ∗ii
(λΣii − 1)2 = ε (27)

Now, consider ε2 as a function of λ. Observe that for λ ≥ 1
σmin(Σ)

, we have that M must be positive semi-

definite, and thus ε2 decays smoothly from ∞ (at λ = 1
σmin

) to zero (at λ = ∞). Similarly, for λ ≤ 1
σmax(Σ)

,
ε decays smoothly as λ decreases. Note, however, that such values of λ would necessarily make M negative
semi-definite, which would actually help the log-likelihood. Thus, we can exclude this case; in particular, for
the remainder of the proofs, we can assume λ ≥ 1

σmax(Σ)
.

Also observe that the zeros of ε in terms of λ are only at λ = ±∞. Using this, we can show that there
exists some ε0 for which, for all ε < ε0, the only corresponding possible valid value of λ is where λ ≥ 1

σmin
.

This idea is formalized in the following Lemma.

Lemma 5. For every Σ∗, there exists some ε0 > 0 for which, for all ε ∈ [0, ε0) the only admissible value of λ is such
that λ ≥ 1

σmin(Σ)
, and thus such that M is positive semi-definite.

Proof. We prove the existence of such an ε0 by lower bounding ε (in terms of λ) for any finite λ > 0 that
does not make M PSD. Providing such a lower bound shows that for small enough ε (in particular, less than
this lower bound), the only corresponding values of λ are as desired in the statement12.

In particular, if M is not PSD, then there must exist at least one index k such that λΣkk < 1, and thus
(λΣkk − 1)2 ≤ 1 for all λ > 0. We can thus lower bound (27) as:

ε = ∑
i=0

Σ∗ii
(λΣii − 1)2 ≥

Σ∗kk
(λΣkk − 1)2 ≥ Σ∗kk ≥ σmin(Σ

∗) > 0 (28)

By contradiction, it follows that for any ε < σmin(Σ∗)2, the only admissible λ is such that M is PSD, i.e.
according to the statement of the Lemma.

12Since our only goal is existence, we lose many factors from the analysis that would give a tighter bound on ε0.

34

In the regime ε ∈ [0, ε0), note that λ is inversely proportional to ε (i.e. as ε grows, λ decreases). This
allows us to get a qualitative view of (26): as the allowed perturbation value increases, the robust covariance
Σ resembles the identity matrix more and more, and thus assigns more and more variance on initially low-
variance features. The

√
Σ∗ term indicates that the robust model also adds uncertainty proportional to the

square root of the initial variance—thus, low-variance features will have (relatively) more uncertainty in the
robust case. Indeed, our main result actually follows as a (somewhat loose) formalization of this intuition.

E.3.7 Proof of main theorems

First, we give a proof of Theorem 2, providing lower and upper bounds on the learned robust covariance Σ
in the regime ε ∈ [0, ε0).

Theorem 2 (Robustly Learned Parameters). Just as in the non-robust case, µr = µ∗, i.e. the true mean is learned.
For the robust covariance Σr, there exists an ε0 > 0, such that for any ε ∈ [0, ε0),

Σr =
1
2

Σ∗ +
1
λ
· I +

√
1
λ
· Σ∗ +

1
4

Σ2∗, where Ω

(
1 + ε1/2

ε1/2 + ε3/2

)
≤ λ ≤ O

(
1 + ε1/2

ε1/2

)
.

Proof. We have already shown that µ = µ∗ in the robust case (c.f. (24)). We choose ε0 to be as described,
i.e. the largest ε for which the set {λ : tr(Σ2∗M) = ε, λ ≥ 1/σmax(Σ)} has only one element λ (which, as we
argued, must not be less than 1/σmin(Σ)). We have argued that such an ε0 must exist.

We prove the result by combining our early derivation (in particular, (25) and (26)) with upper and lower
bound on λ, which we can compute based on properties of the trace operator. We begin by deriving a lower
bound on λ. By linear algebraic manipulation (given in Appendix E.3.8), we get the following bound:

λ ≥ d
tr(Σ)

(
1 +

√
d · σmin(Σ∗)

ε

)
(29)

Now, we can use (25) in order to remove the dependency of λ on Σ:

Σ = Σ∗(M + I)2

tr(Σ) = tr
[
(Σ1/2
∗ M + Σ1/2

∗)2
]

≤ 2 · tr
[
(Σ1/2
∗ M)2 + (Σ1/2

∗)2
]

≤ 2 · (ε + tr(Σ∗)) .

Applying this to (29) yields:

λ ≥ d/2
ε + tr(Σ∗)

(
1 +

√
d · σmin(Σ∗)

ε

)
.

Note that we can simplify this bound significantly by writing ε = d · σmin(Σ∗)ε′ ≤ tr(Σ∗)ε′, which does not
affect the result (beyond rescaling the valid regime (0, ε0)), and gives:

λ ≥ d/2
(1 + ε′)tr(Σ∗)

(
1 +

1√
ε′

)
≥ d · (1 +

√
ε′)

2
√

ε′(1 + ε′)tr(Σ∗)

Next, we follow a similar methodology (Appendix E.3.8) in order to upper bound λ:

λ ≤ 1
σmin(Σ)

(√
‖Σ∗‖F · d

ε
+ 1

)
.

Note that by (25) and positive semi-definiteness of M, it must be that σmin(Σ) ≥ σmin(Σ∗). Thus, we can
simplify the previous expression, also substituting ε = d · σmin(Σ∗)ε′:

λ ≤ 1
σmin(Σ∗)

(√
‖Σ∗‖F

σmin(Σ∗)ε′
+ 1

)
=
‖Σ∗‖F +

√
ε · σmin(Σ∗)

σmin(Σ∗)3/2
√

ε

35

These bounds can be straightforwardly combined with Lemma 4, which concludes the proof.

Using this theorem, we can now show Theorem 3:

Theorem 3 (Gradient alignment). Let f (x) and fr(x) be monotonic classifiers based on the linear separator induced
by standard and `2-robust maximum likelihood classification, respectively. The maximum angle formed between the
gradient of the classifier (wrt input) and the vector connecting the classes can be smaller for the robust model:

min
µ

〈µ,∇x fr(x)〉
‖µ‖ · ‖∇x fr(x)‖ > min

µ

〈µ,∇x f (x)〉
‖µ‖ · ‖∇x f (x)‖ .

Proof. To prove this, we make use of the following Lemmas:

Lemma 6. For two positive definite matrices A and B with κ(A) > κ(B), we have that κ(A+ B) ≤ max{κ(A), κ(B)}.
Proof. We proceed by contradiction:

κ(A + B) =
λmax(A) + λmax(B)
λmin(A) + λmin(B)

κ(A) =
λmax(A)

λmin(A)

κ(A) ≥ κ(A + B)
⇐⇒ λmax(A) (λmin(A) + λmin(B)) ≥ λmin(A) (λmax(A) + λmax(B))

⇐⇒ λmax(A)λmin(B) ≥ λmin(A)λmax(B)

⇐⇒ λmax(A)

λmin(A)
≥ λmin(A)

λmax(B)
,

which is false by assumption. This concludes the proof.

Lemma 7 (Straightforward). For a positive definite matrix A and k > 0, we have that

κ(A + k · I) < κ(A) κ(A + k ·
√

A) ≤ κ(A).

Lemma 8 (Angle induced by positive definite matrix; folklore). 13 For a positive definite matrix A � 0 with
condition number κ, we have that

min
x

x>Ax
‖Ax‖2 · ‖x‖2

=
2
√

κ

1 + κ
. (30)

These two results can be combined to prove the theorem. First, we show that κ(Σ) ≤ κ(Σ∗):

κ(Σ) = κ

(
1
λ

I +
1
2

Σ∗ +

√
1
λ

Σ∗ +
1
4

Σ2∗

)

< max

{
κ

(
1
λ

I +
1
2

Σ∗

)
, κ

(√
1
λ

Σ∗ +
1
4

Σ2∗

)}

< max

{
κ (Σ∗) ,

√
κ

(
1
λ

Σ∗ +
1
4

Σ2∗

)}

= max

κ (Σ∗) ,

√√√√κ

(
2
λ

√
1
4

Σ2∗ +
1
4

Σ2∗

)

≤ κ (Σ∗) .

Finally, note that (30) is a strictly decreasing function in κ, and as such, we have shown the theorem.
13A proof can be found in https://bit.ly/2L6jdAT

36

https://bit.ly/2L6jdAT

E.3.8 Bounds for λ

Lower bound.

ε = tr(Σ∗M2)

≥ σmin(Σ∗) · tr(M2) by the definition of tr(·)

≥ σmin(Σ∗)
d

· tr(M)2 by Cauchy-Schwarz

≥ σmin(Σ∗)
d

·
[
tr
(
(λΣ− I)−1

)]2
Expanding M (21)

≥ σmin(Σ∗)
d

·
[
tr (λΣ− I)−1 · d2

]2
AM-HM inequality

≥ d3 · σmin(Σ∗) · [λ · tr(Σ)− d]−2

[λ · tr(Σ)− d]2 ≥ d3 · σmin(Σ∗)
ε

λ · tr(Σ)− d ≥ d3/2 ·
√

σmin(Σ∗)√
ε

since M is PSD

λ ≥ d
tr(Σ)

(
1 +

√
d · σmin(Σ∗)

ε

)

Upper bound

ε = tr(Σ∗M2)

≤ ‖Σ∗‖F · d · σmax(M)2

≤ ‖Σ∗‖F · d · σmin(M)−2

λ · σmin(Σ)− 1 ≤
√
‖Σ∗‖F · d

ε

λ ≤ 1
σmin(Σ)

(√
‖Σ∗‖F · d

ε
+ 1

)
.

37

	Introduction
	The Robust Features Model
	Finding Robust (and Non-Robust) Features
	Disentangling robust and non-robust features
	Non-robust features suffice for standard classification
	Transferability can arise from non-robust features

	A Theoretical Framework for Studying (Non)-Robust Features
	Related Work
	Conclusion
	Connections to and Disambiguation from Other Models
	Additional Related Work
	Experimental Setup
	Datasets
	Models
	Adversarial training
	Constructing a Robust Dataset
	Non-robust features suffice for standard classification

	Omitted Experiments and Figures
	Detailed evaluation of models trained on ``robust'' dataset
	Adversarial evaluation
	Performance of ``robust'' training and test set
	Classification based on non-robust features
	Accuracy curves
	Performance of ERM classifiers on relabeled test set
	Omitted Results for Restricted ImageNet
	Robustness vs. Accuracy

	Gaussian MLE under Adversarial Perturbation
	Setup
	Outline and Key Results
	Proofs
	Motivating example: l-2-constrained adversary
	Variant with Fixed Lagrangian (Theorem 1)
	Real objective
	Danskin's Theorem
	Applying Danskin's Theorem
	Bounding λ
	Proof of main theorems
	Bounds for λ

