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Abstract

Dataset replication is a useful tool for assessing whether improvements in test accuracy on a specific
benchmark correspond to improvements in models’ ability to generalize reliably. In this work, we present
unintuitive yet significant ways in which standard approaches to dataset replication introduce statistical
bias, skewing the resulting observations. We study ImageNet-v2, a replication of the ImageNet dataset on
which models exhibit a significant (11-14%) drop in accuracy, even after controlling for a standard human-
in-the-loop measure of data quality. We show that after correcting for the identified statistical bias, only an
estimated 3.6%± 1.5% of the original 11.7%± 1.0% accuracy drop remains unaccounted for. We conclude
with concrete recommendations for recognizing and avoiding bias in dataset replication. Code for our
study is publicly available1.

1 Introduction

The primary objective of supervised learning is to develop models that generalize robustly to unseen data.
Benchmark test sets provide a proxy for out-of-sample performance, but can outlive their usefulness in
some cases. For example, evaluating on benchmarks alone may steer us towards models that adaptively
overfit [Reu03; RFR08; Dwo+15] to the finite test set and do not generalize. Alternatively, we might select for
models that are sensitive to insignificant aspects of the dataset creation process and thus do not generalize
robustly (e.g., models that are sensitive to the exact set of humans who annotated the test set).

To diagnose these issues, recent work has generated new, previously “unseen” testbeds for standard
datasets through a process known as dataset replication. Though not yet widespread in machine learn-
ing, dataset replication is a natural analogue to experimental replication studies in the natural sciences
(cf. [Bel73]). These studies play an important role in verifying empirical findings, and ensure that results
are neither affected by adaptive data analysis, nor overly sensitive to experimental artifacts.

Recent dataset replication studies [Rec+19b; Rec+19a; YB19] have generally found little evidence of
adaptive overfitting: progress on the original benchmark translates to roughly the same amount (or more)
of progress on newly constructed test sets. On the other hand, model performance on the replicated test set
tends to drop significantly from the original one.

One of the most striking instances of this accuracy drop is observed by Recht et al. [Rec+19b], who per-
formed a careful replication of the ImageNet dataset and observe an 11-14% gap between model accuracies
on ImageNet and their new test set, ImageNet-v2. The magnitude of this gap presents an empirical mystery,
and motivates us to understand what factors cause such a large drop in accuracy.

In this paper, we identify a mechanism through which the dataset replication process itself might lead
to such a drop: noisy readings during data collection can introduce statistical bias. We show that this

∗Equal contribution.
1https://github.com/MadryLab/dataset-replication-analysis
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mechanism may explain all but 3.6%± 1.5% of the original 11.7%± 1.0% accuracy drop between ImageNet
and ImageNet-v2.

Our explanation revolves around what we refer to as the “statistic matching” step of dataset replica-
tion. Statistic matching ensures that model performance on the original test set and its replication are com-
parable by controlling for variables that are known to (or hypothesized to) impact model performance.2

Drawing a parallel to medicine, suppose we wanted to replicate a study about the effect of a certain drug
on an age-linked disease. After gathering subjects, we have to reweight or filter them so that the age dis-
tribution matches that of the original study—otherwise, the results of the studies are incomparable. This
filtering/reweighting step is analogous to statistic matching in our context, with participant age being the
relevant statistic.

To construct ImageNet-v2, Recht et al. [Rec+19b] perform statistic matching based on the “selection
frequency" statistic, which for a given image-label pair measures the rate at which crowdsourced annotators
select the pair as correctly labeled. As we discuss in the next section, selection frequency is a well-motivated
choice of matching statistic, since (a) Deng et al. [Den+09] use a similar metric to gather ImageNet images
in the first place [Den+09], and (b) Recht et al. [Rec+19b] have found that selection frequency is highly
predictive of model accuracy.

Why does a significant drop in accuracy persist even after matching selection frequencies? In this paper,
we show that (inevitable) mean-zero noise in selection frequency readings leads to bias in the selection
frequencies of the replicated dataset, which translates to a drop in model accuracies. We also discuss how
finite-sample reuse makes this bias difficult to detect.

The bias-inducing mechanism that we identify applies whenever statistic matching is performed using
noisy estimates. We characterize the mechanism theoretically in Section 2. In Section 3, we remeasure
selection frequencies using Mechanical Turk and observe that as our mechanism predicts, ImageNet-v2
images indeed have lower selection frequency on average. After presenting a framework for studying the
effect of statistical bias on model accuracy (Section 4), we use de-biasing techniques to estimate a bias-
corrected accuracy for ImageNet-v2 (Section 5). In Section 7, we discuss the implications of the identified
mechanism for ImageNet-based computer vision models specifically, and for data replication studies more
generally.

2 Identifying Sources of Reproduction Bias

The goal of dataset replication is to create a new dataset by reconstructing the pipeline that generated the
original test set as closely as possible. We expect (and intend) for this process to introduce a distribution
shift, partly by varying parameters that should be irrelevant to model performance (e.g. the exact identity
of the annotators used to filter the dataset). To ensure that results are comparable with original test sets,
however, dataset replication studies must control for distribution shifts in variables that impact task per-
formance. This is accomplished by subsampling or reweighting the data so that each relevant variable’s
distributions under the replicated dataset and the original dataset match one another. We refer to this
process as statistic matching.

Our key observation is that standard approaches to statistic matching can lead to bias in the final
replicated dataset: we illustrate this phenomenon in the context of the ImageNet-v2 (v2) dataset replica-
tion [Rec+19b]3. Before we identify the source of this bias in ImageNet-v2 construction, we review the data
collection process for both ImageNet and ImageNet-v2.

ImageNet and selection frequency. ImageNet [Den+09; Rus+15] (which we also refer to as ImageNet-
v1 or v1) is one of the most widely used datasets in computer vision. To construct ImageNet, Deng et al.
[Den+09] first amassed a large candidate pool of image-label pairs using image search engines such as
Flickr. The authors then asked annotators on Amazon Mechanical Turk (MTurk) to select the candidate

2In causal inference terms, statistic matching is an instance of covariate balancing [IR13].
3Note that Recht et al. [Rec+19b] actually design three datasets, in order to measure the effect of selection frequency on model

performance. We focus our attention on MatchedFrequency (referred to as just ImageNet-v2 here, in Recht et al. [Rec+19b] and
elsewhere [Tao+20; LDS20; RM19; RSP19]), since it is the only dataset designed to replicate the ImageNet validation set.
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Selection Frequency: 36% Selection Frequency: 61% Selection Frequency: 100%

Figure 1: The smallest, median, and largest selection frequency images from v1 corresponding to the
“throne” class (description: the chair of state for a monarch, bishop, etc.; “the king sat on his throne”—the
“throne” class was randomly chosen). The images become easier to identify as the labeled class as selection
frequency increases; for additional context, we give a random sampling of selection frequency/image pairs
in Appendix B.

images that were correctly labeled. Each image is shown to multiple annotators, and an image’s selection
frequency 4 is then defined as the fraction of annotators that selected it.

Intuitively, images with low selection frequency are likely confusing or their proposed label is incor-
rect, while images with high selection frequency should be “easy” for humans to identify as the proposed
label (we show examples of selection frequencies in Figure 1; further examples are in Appendix 8). There-
fore, Deng et al. [Den+09] include only images with high selection frequency in the final ImageNet dataset5.

ImageNet-v2. ImageNet-v2 is a replication of ImageNet-v1 that controls for selection frequency via statis-
tic matching. Following the protocol of Deng et al. [Den+09], Recht et al. [Rec+19b] collected a large pool
of candidate image-label pairs, and estimated their selection frequencies via MTurk along with a subset of
the original ImageNet validation set. Recht et al. [Rec+19b] then estimated the distribution of ImageNet-v1
selection frequencies for each class. Finally, they subsampled ten images of each class from the candidate
pool according to the estimated class-specific distributions.

For example, suppose 40% of “goldfish” images in ImageNet-v1 have selection frequency in the his-
togram bucket [0.6, 0.8]—when constructing ImageNet-v2, Recht et al. [Rec+19b] would in turn sample 4
“goldfish” images from the same histogram bucket in the candidate images6.

Statistic matching should ensure that v1 and v2 are balanced in terms of selection frequency, and partly
justifies the expectation that models should perform similarly on both.

Sources of bias. We identify two places where the matching strategy of Recht et al. [Rec+19b] might in-
troduce statistical bias. One potential source of bias could arise from binning the images into histograms—
since there are relatively few bins, it is possible that within each bin the ImageNet images have different
selection frequencies from the corresponding Flickr images. (For example, the ImageNet-v1 images in the
s(x) ∈ [0., 0.2] bucket might actually have selection frequency concentrated around 0.15, whereas the Flickr
images in the same bucket might have been concentrated around s(x) = 0.1.) However, this source of error
appears to have not had a pronounced effect (at least on average), as Recht et al. [Rec+19b] report that the
average selection frequency of the ImageNet-v2 images actually matches that of the ImageNet-v1 test set.

Our analysis revolves around a second and more subtle source of bias, however. This bias stems from
the fact that for any given image x, the selection frequency s(x) is never measured exactly. Instead, we are
only able to measure ŝ(x), a finite-sample estimate of the statistic, attained by averaging over a relatively
small number of annotators.

4Note that the term “selection frequency” was in fact coined by Recht et al. [Rec+19b], but it is also useful for describing the initial
setup of Russakovsky et al. [Rus+15], who instead referred to their process as “majority voting.”

5Specifically, an image is included into the ImageNet test set if a “convincing majority” [Rus+15] of annotators select it.
6Note that in Recht et al. [Rec+19b] this process is done on a class-by-class basis and also includes provisions for when there are

not enough Flickr images in a particular bin, but the core distribution-matching mechanism is otherwise identical.
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Figure 2: For an image x, the selection frequency statistic s(x) described in Section 2 is a single number in
[0, 1] that captures how “easy” a given image is to classify for humans. A distribution over images (pi(x))
thus induces a one-dimensional distribution over selection frequencies (pi(s(x))). In (a), we visualize such
hypothetical selection frequency distributions for both the Flickr data distribution (p f lickr(s(x))) and the
ImageNet-v1 data distribution (p1(s(x))). In (b), we consider a case where we are given, for a specific
image x, a noisy version of s(x) (ŝ(x)). We visualize the corresponding distribution of the true selection
frequency s(x) given this noisy ŝ(x) = 0.7. As discussed in Section 2, note that even though ŝ(x) is an
unbiased estimate of s(x), the most likely value of s(x) for a given noisy reading of ŝ(x) actually depends on
the distribution from which x is drawn. This is the driving phenomenon behind the observed bias between
ImageNet and ImageNet-v2.

To model the impact of this seemingly innocuous detail, suppose that the selection frequencies s(x) of
ImageNet and Flickr images are distributed according to p1(s(x)) and p f lickr(s(x)) respectively (or more
briefly, p1(s) and p f lickr(s))—see Figure 2a for a visualization. Now, suppose that for an image x, we get
an unbiased noisy measurement ŝ(x) = 0.75 of the selection frequency via crowdsourcing. Then, even
if ŝ(x) is an unbiased estimate of s(x), the most likely value of s(x) for the image is not ŝ(x), but in fact
depends on the distribution from which x was drawn. Indeed, for the (hypothetical) distributions shown
in Figure 2a, if x is a Flickr image then it is more likely that s(x) < 0.75 and ŝ is an overestimate, since a
priori an image is likely to have a low selection frequency (i.e., there is more p f lickr(s) mass below 0.75)
and the noise is unbiased. Conversely, if x is an ImageNet test set image in this same setting, it is more
likely that s(x) > 0.75. Therefore, if we use a Flickr image with a noisy selection frequency 0.75 to “match”
an ImageNet image with the same noisy selection frequency, the true selection frequency of the ImageNet
image is actually likely to be higher. We can make this explicit by writing down the likelihood of s given
ŝ = 0.75 (also plotted in Figure 2b):

pi(s|ŝ = 0.75) =
pi(s) · p(ŝ = 0.75|s)

pi(ŝ = 0.75)
∀ i ∈ {1, f lickr},

which depends on the prior pi(·) and therefore is not equal for both values of i.
The distribution of candidate Flickr images is likely skewed to have lower selection frequencies than

v1—after all, Deng et al. [Den+09] narrowed down Imagenet-v1 from a large set of candidates based on
quality. Therefore, one would expect the underlying true selection frequencies of the v1 images to be higher
than their matched ImageNet-v2 counterparts (as illustrated in Figure 2a). More generally, bias arises from
the fact that even though ŝ(x) given x is unbiased (e.g. E[ŝ(x)|x] = E[ŝ(x)|s(x)] = s(x)), functions of
x given ŝ(x) are not necessarily unbiased for many natural statistics (i.e. E[q(x)|ŝ(x)] 6= E[q(x)|s(x)] for
statistics q).
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Figure 3: Illustrations accompanying the simple theoretical model. (a) In the simple model, we assume
p1(s(x)) and p f lickr(s(x)) are Beta(α + 1, β) and Beta(α, β), respectively—this is visualized above for the
case of α = β = 2. (b) The results of the simple model reveal that as more and more samples are used to
estimate s(x) for each image, the resulting ImageNet-v2 distribution tends towards the v1 distribution, but
does not actually match the v1 sample for any finite number of samples per image.

A simple model of the bias. To better understand the source of the bias, consider a simple model in which
the ImageNet-v2 selection process is cast as a rejection sampling procedure. Here, the densities p1(ŝ(x)) and
p f lickr(ŝ(x)) are estimated from samples (analogous to the histograms of Recht et al. [Rec+19b])—then, for a
given Flickr image x, we “accept” x into the v2 dataset with probability proportional to p1(ŝ(x))/p f lickr(ŝ(x))
(analogous to the bin-wise sampling of Recht et al. [Rec+19b]). If selection frequency readings were not
noisy, i.e. if ŝ(x) = s(x), then the resulting density of selection frequencies in the v2 dataset would be given
by

p f lickr(s(x)) · p1(s(x))
p f lickr(s(x))

= p1(s(x)),

and the selection frequencies of v2 would be distributed in the same way as those of v1, as intended.
However, the inevitable noisiness of the selection frequencies means that in reality, the density of selection
frequencies for v2 will be given by

p f lickr(s(x)) ·P(x is accepted into v2|s(x)) = p f lickr(s(x)) ·
∫

ŝ
p(ŝ|s)P(x is accepted|ŝ(x))

= p f lickr(s(x)) ·
∫

ŝ
p(ŝ|s) p1(ŝ(x))

p f lickr(ŝ(x))
.

Now, suppose for simplicity that p f lickr(s) and p1(s) are given by beta distributions Beta(α, β) and Beta(α +

1, β) respectively7 (c.f. Figure 3a). Furthermore, suppose that ŝ(x) is given by an average of n Bernoulli
draws with success probability s(x). Then, a series of calculations (shown in Appendix C) reveals that the
resulting v2 selection frequency distribution is given by:

n
n + β + α

· Beta(α + 1, β) +
α + β

n + β + α
· Beta(α, β) =

n
n + β + α

· p1(s) +
α + β

n + α + β
· p f lickr(s). (1)

Note that as n → 0 (no filtering is done at all), the above expression evaluates to exactly p f lickr(s), as
expected. Then, as the number of workers n tends to infinity (i.e. ŝ becomes less noisy), the distribution of
ImageNet-v2 selection frequencies converges to the desired p1(s). For any finite n, however, the resulting

7This is a simple model intended for illustrative purpose—we will later use a more sophisticated model to capture the actual
distribution of selection frequencies.
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Figure 4: Selection frequency histograms for v1 and v2 based on our selection frequency re-measurement
experiment. Results indicate that v2 seems to have lower selection frequency.

v2 distribution will be a non-degenerate mixture between p f lickr(s) and p1(s), and therefore does not match
the distribution of selection frequencies p1(s) exactly. The results of this toy model (depicted in Figure 3b)
capture the bias that could be incurred by the data replication pipeline of Recht et al. [Rec+19b]. In the next
section, we set out to quantify the bias suffered by the actual pipeline of Recht et al. [Rec+19b].

3 Remeasuring Selection Frequencies

In this section, we measure the effect of the described noise-induced bias on the true and observed selection
frequencies of images in ǎnd v2. Using an annotation task closely resembling those of the ImageNet-v2 and
ImageNet MTurk experiments, we collect new selection frequency estimates for all of ImageNet-v2 and for
a subset of ImageNet. In these tasks, MTurk annotators were shown grids of 48 images at a time, each
corresponding to an ImageNet class. Each grid contained a mixture of ImageNet, Flickr, and in our case,
ImageNet-v2 images of the corresponding class (since ImageNet-v2 was not yet realized at the time of the
other experiments), as well as control images from other classes. We describe the setup in more detail in
Appendix B.1. Annotators were tasked with selecting all the images in the grid containing an object from
the class in question. Each image was seen by 40 distinct annotators, and assigned an observed selection
frequency equal to the fraction of these workers that selected it.

Histograms of observed selection frequencies for v1 and v2 are shown in Figure 4. We find that the
average selection frequencies of the v1 and v2 images were 85.2% ± 0.1% and 80.7% ± 0.1% respectively
compared to 71% and 73% reported by Recht et al. [Rec+19b] 8. This means that the initial 2% gain in selec-
tion frequency measured by Recht et al. [Rec+19b] turns into a 5% drop. Our model of dataset replication
bias predicts this discrepancy: once observed selection frequencies are used for statistic matching, they no
longer provide an unbiased estimate of true selection frequency9.

Detecting bias using the original data. Our MTurk task measures a significant selection frequency gap
betweeen v1 and v2 (~5%), but also measures average selection frequencies for both datasets to be signifi-
cantly higher than reported by Recht et al. [Rec+19b], suggesting differences in experimental setup. Indeed,
while the tasks themselves were identical, we did make a few changes to the deployment setup of Recht

895% bootstrapped CI. The average selection frequency (unlike other statistics we discuss) is always unbiased, and thus average
observed selection frequency will converge quickly to the average true selection frequency by law of large numbers.

9To draw an analogy here, suppose that instead of matching image datasets, we were matching two piles of coins: a rigged pile A
(PA(heads) = 1) and a fair pile B (PB(heads) = 0.5). To match pile B to pile A, we flip the coins in both piles 10 times each—inevitably,
some of the coins in pile B will land heads all 10 times. These “matched” coins are identical to pile A coins with respect to the observed
“number of heads” statistic, but are obviously not identical coins. Yet, even though flipping the matched coins another 10 times would
reveal this, it is impossible to conclude anything other than P(heads) = 1 solely from the already-collected data on the matched coins.
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et al. [Rec+19b] to improve data quality. These changes are outlined in Appendix B.2: examples include
introducing worker screening qualifications10, and using different proportions of images per grid. Since
the task interface remained constant and workers are not able to distinguish between ImageNet-v1 and
ImageNet-v2 images while labeling, we believe that the changes made improve data quality across both
datasets while negligibly affecting the selection frequency gap between them.

Still, we can fully control for experimental differences by analyzing the raw data of Recht et al. [Rec+19b]
directly, taking care to avoid bias from observed selection frequency reuse. We defer the exact data analysis
to Appendix D; in summary, we perform three experiments:

• Recall that Recht et al. [Rec+19b] perform statistic matching using observed selection frequencies,
measured with n = 10 annotators, to get ImageNet-v2. We gradually decreased n to study the effect
of finite-sample noise, and found that model accuracy on the resulting replicated dataset degrades.
For example, the accuracy gap from v1 to the replication increases from 12% when n = 10, to 14%
when n = 5. This is consistent with our model of statistic matching bias: fewer annotators means
noisier observed selection frequencies ŝn(x), which in turn amplifies the effect of the bias, driving
down model accuracies.

• In the second experiment, we repeat the statistic matching process of Recht et al. [Rec+19b] using five
“in-sample” annotators per candidate image, reserving the remaining annotations as a held-out set.
We find that the average selection frequency measured by the in-sample annotations overestimates
the true average selection frequency (i.e., as measured by the held-out set) by 2-3%. In fact, the held-
out average selection frequency is consistently lower for the replicated dataset than for ImageNet-v1.

• Finally, we use the held-out set from this second experiment to filter the candidate pool via a held-out
selection frequency cutoff. This skews the distribution of true selection frequencies in the candidate
pool towards higher values. As predicted by our model of statistic-matching bias, using this skewed
subset in place of the full candidate pool for statistic matching results in increased model accuracy
(yet identical in-sample selection frequencies).

These results suggest that statistic matching bias affects the v2 dataset, even fully controlling for exper-
imental setup. In the coming sections, we quantify the effects of this bias on the model accuracies observed
by Recht et al. [Rec+19b].

4 Understanding the Accuracy Gap

Our findings so far have suggested that statistic matching bias results in a downwards bias in ImageNet-v2
true selection frequencies. In this section, we quantify the impact on this bias on ImageNet-v2 accuracy.

4.1 Notation and terminology

Here we overview the notation and terminology useful in discussing the bias in ImageNet-v2 accuracy.

Selection frequencies. In Section 2 we defined the true selection frequency s(x) for an image x to be
the (population) rate at which crowd annotators select the image as “correctly labeled.” The true selec-
tion frequency of an image is unobservable, and often approximated by the observed selection frequency,
ŝn(x) ∼ 1

n Binom (n, s(x)), which can be estimated from an n-annotator MTurk experiment. When n is clear
from context we will often omit it and write ŝ(x).

10Worker qualification is a service provided by MTurk that only allows “high-reputation” annotators (typically measured by histor-
ical annotation quality on the platform) to complete a given task. Qualifications have been shown to significantly impact data quality:
in [PVA13], using qualifications lowered the number of inattentive workers from 33% to less than 1%.
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Distributions. We will use D1 and D2 to denote the distributions of v1 and v2 images respectively, and
S1 and S2 to denote the corresponding finite test sets. As in Section 2, we denote by pi(s) the probability
density of true selection frequencies for images drawn from Di (or Flickr, if i = f lickr). Similarly, we use
pi(ŝn(x)) to denote the probability mass function of the observed selection frequency for dataset i.

We letD2|s1 be the distribution of ImageNet-v2 images reweighted to have the same selection frequency
distribution as ImageNet-v1. Formally, D2|s1 is the compound distribution (x2 ∼ D2|s(x2) ∼ p1(s)). Sam-
pling from D2|s1 corresponds to first sampling a v1 image x1, then sampling an image x2 from the v2
distribution conditioned on s(x2) = s(x1).

Accuracies. For a classifier c, let fc(x) be an indicator variable of whether c correctly classifies x. Since our
analysis applies to any fixed classifier c, we omit it and use f (x). We then define AX to represent classifier
accuracy on distribution or test set X—for example, classifier accuracy on v1 is given by

AD1 = Px1∼D1 ( f (x1) = 1) = Ex1∼D1 [ f (x1)] .

4.2 Breaking down the accuracy gap

The accuracy gap between the v1 and v2 test sets is given by AS1 − AS2 . What fraction of this gap can
be attributed to bias in selection frequency? To answer this, we decompose this accuracy gap into three
elements whose contribution can be studied separately:

AS1 −AS2 =
(
AS1 −AD2|s1

)
︸ ︷︷ ︸

bias-corrected accuracy gap

+
(
AD2|s1

−AD2

)
︸ ︷︷ ︸

selection gap

+
(
AD2 −AS2

)
︸ ︷︷ ︸

finite sample gap ≈ 0

. (2)

Bias-corrected accuracy gap. The first term of (2), called the bias-corrected accuracy gap, captures the
portion of the v1-v2 accuracy drop that cannot be explained by a difference in selection frequency, and
instead might be explained by benign distribution shift or adaptive overfitting11.

Selection gap. The second term of (2) is accuracy gap that can only be attributed to selection frequency,
since it compares accuracy on D2 to accuracy on a reweighted version of D2. If there was no bias, and the
distribution of selection frequencies for v1 and v2 matched exactly, then this term would equal zero (D2|s1
would equal D2). Thus, the selection gap translates the effect of discrepancy in true selection frequency
between v1 and v2 into a discrepancy in accuracy. Since we measured v1 as having higher true selection
frequency, we expect the selection gap to be positive and thus explain a portion of the accuracy gap that
was previously attributed to distribution shift.

Finite-sample error. The final term refers to the finite-sample error from using 10, 000 images as a proxy
for distributional accuracy. We believe that this term is negligible, since (a) 95% bootstrapped confidence
intervals for the classifiers we evaluate are all at most 0.1%, and (b) there can be no adaptive overfitting
on S2 with respect to D2. Thus, we drop this term from consideration and instead use AD2 and AS2 inter-
changeably.

Computing selection-adjusted accuracy. We have shown how to decompose the v1-v2 accuracy gap into
a component explained by selection frequency (selection gap), and a component unexplained by selection
frequency (bias-corrected accuracy gap). The challenge in computing this decomposition is estimating
AD2|s1

, the selection-adjusted v2 accuracy. While the closed form of AD2|s1
is∫

s
ED2 [ f (x)|s(x) = s] · p1(s) ds,

11In fact, this term can be further decomposed into a sum of an adaptivity gap (AS1 −AD1 ), and a distribution shift gap (AD1 −
AD2 |s1

). However, since we don’t have access to AD1 it is difficult to disentangle these.
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we have no access to pi(s) for any value of i (we do not even have direct access to s(x) for any image x).
In the next section, we explore methods for estimatingAD2|s1

using only the observed selection frequencies
that we collected.

5 Quantifying the Bias

In the previous sections, we showed that statistic matching based on noisy observed selection frequencies
may lead ImageNet-v2 images to have lower true selection frequencies than expected. In Section 4 we
related this discrepancy in selection frequency to a corresponding discrepancy in model accuracy between
v1 and v2, which we called the “selection gap.” In this section, we explore a series of methods for estimating
this gap—we estimate that the selection gap accounts for 8.1% of the 11.7% v1-v2 accuracy drop.

5.1 Naïve approach

In the last section we introduced the selection-adjusted v2 accuracy,

AD2|s1
=
∫

s
ED2 [ f (x)|s(x) = s] · p1(s) ds, (3)

which captures model accuracy on a version of ImageNet-v2 reweighted to have the same true selection
frequency distribution of ImageNet-v1. Since we do not observe true selection frequencies, we cannot
evaluate AD2|s1

, and are instead forced to estimate it. A natural way to do so is to use observed selection
frequencies in place of true ones, leading to the following “naïve estimator:”

Ân
D2|s1

=
n

∑
k=0

Ex2∼D2

[
f (x2)|ŝn(x2) =

k
n

]
· p1

(
ŝn(x1) =

k
n

)
. (4)

The naïve estimator is a computable12 but biased estimator of the selection-adjusted accuracy. This follows
from our analysis in Section 2, since Ân

D2|s1
is just a mechanism for statistic matching between ImageNet-

v1 and ImageNet-v2 using observed selection frequencies in place of true selection frequencies. Thus, the
selection-adjusted v2 accuracy computed by the naïve estimator is likely to still underestimate the true
selection-adjusted accuracy AD2|s1

.
We can verify this bias empirically by varying the number of annotators n used to calculate ŝn(x) for

each image, and visualizing the resulting trends in pi(ŝn(x)) (Figure 5a), pi( f (x) = 1|s(x)) (Figure 5b),
and Ân

D2|s1
(Figure 5c). The results corroborate our analysis in Section 2 and our findings from Section 3.

Specifically, Figure 5 plots each term in the definition of the naïve estimator,

Ân
D2|s1︸ ︷︷ ︸

Fig. 5c

=
n

∑
k=0

Ex2∼D2

[
f (x2)|ŝn(x2) =

k
n

]
︸ ︷︷ ︸

Fig. 5b

· p1

(
ŝn(x1) =

k
n

)
︸ ︷︷ ︸

Fig. 5a

, (5)

and allows us to draw the following conclusions:

• Figure 5a shows that the distribution of observed v1 selection frequencies p1(ŝn(x)) becomes increas-
ingly skewed as more annotators are used to estimate selection frequencies (i.e. as bias decreases).

• Figure 5b plots selection frequency-conditinoed classifier accuracy, Ex2∼D2

[
f (x2)|ŝn(x2) =

k
n

]
as a

function of n. The plot indicates that when we use observed selection frequency in place of true
selection frequency, we overestimate model accuracy on images with low selection frequency and
underestimate accuracy on images with high selection frequency.

12We can compute the naïve estimator as long as we have enough images to reliably approximate the expectations. We assume
this is the case in our study, since (a) we have 104 images and only 41 possible values of ŝn(x) and (b) halving the number of images
negligibly affects the value of the estimator.
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Figure 5: A series of graphs, all demonstrating bias in estimators that condition on selection frequency.
Left: The estimated population density of selection frequencies, calculated naïvely from samples. For a
given number of annotators per image n, the corresponding line in the graph has equally spaced points of
the form (k/n, ∑ 1ŝ=k/n). Middle: Model accuracy of a ResNet-26 conditioned on selection frequency; once
again, we naïvely using empirical selection frequency in place of true selection frequency for conditioning.
Just as in the left-most graph, for a given n-annotator line, points at x = k/n in the graph correspond to the
accuracy on images with observed selection frequency k/n. Right: Adjusted v1 versus v2 accuracy plots,
calculated for varying numbers of annotators per image (with adjusted accuracy computed using the naïve
estimator of Section 5.1). Each point in the plot corresponds to a trained model.

• Combining these two sources of bias, Figure 5c shows that as we reduce bias by increasing n, the
selection-adjusted v2 accuracy increases for every classifier.

It turns out that computing (4) using the 40 annotators per image that we collected in Section 3 already
produces selection-adjusted v2 accuracies that are on average 6.0% higher than the initially observed v2 ac-
curacy. Thus, despite still suffering from statistic matching bias, the naïve reduces the v1-v2 accuracy drop
to 5.7%. In the following sections, we explore two different techniques for debiasing the naïve estimator
and explaining more of the accuracy gap.

5.2 Estimating bias with the statistical jackknife

As a first attempt at correcting for the previously identified bias, we turn to a standard tool from classical
statistics. The jackknife [Que49; Que56; Tuk58] is a nonparametric method for reducing the bias of finite-
sample estimators. Under mild assumptions, the jackknife can reduce the bias of any estimator from O( 1

n )

to O( 1
n2 ). Concretely, the jackknife bias estimate for an n-sample estimator θn := θ̂(X1, . . . , Xn) is given by:

bjack(θ̂n) = (n− 1) ·
(

1
n ∑

i=1
θ̂
(i)
n−1 − θ̂n

)
,

where θ̂
(i)
n−1 = θ̂(X1, . . . , Xi−1, Xi+1, . . . , Xn) is the ith leave-one-out estimate.

The statistical jackknife thus provides us with a technique for estimating and correcting for the bias in
finite-sample estimates of the frequency-adjusted accuracy AD2|s1

.

Jackknifing the naïve estimator. As a first approach, we can apply the jackknife directly to the naïve esti-
mator (cf. (4)). For the jackknife-corrected estimate to be meaningful, we have to show that the naïve estima-
tor is a statistically consistent estimator of the true selection-adjusted accuracy (i.e., that limn→∞ Ân

D2|s1
=

AD2|s1
). We prove this property in Appendix E, under the assumption that we can evaluate quantities of

the form pi(ŝn(x) = s) exactly (in practice this assumption seems acceptable since the empirical variance of

10
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(b) Adjustment via mixture model

Figure 6: Accuracy on v1 versus v2 adjusted using the two techniques discussed in this section. On the
left (respectively, right) we use the jackknife (parametric model) of Section 5.2 (5.3) to estimate adjusted
accuracies for v2. The graphs confirm that the “true” gap in accuracy between v1 and v2 is indeed much
smaller than the initially observed gap. Confidence intervals on the left are based on the jackknife standard
error, and confidence intervals on the right are based on 400-sample 95% bootstrap confidence intervals

the estimator is small)13. Applying the jackknife to the naïve estimator reduces the adjusted accuracy gap
further, from 5.7% to 4.6%.

Considerations and limitations of the jackknife approach. For the jackknife to perform reliably, we
must have that (a) the leave-one-out estimators have low enough variance, and (b) the bias is an analytic
function in 1/n that is dominated by the Θ( 1

n ) term in its power series expansion. We address the first of
these concerns by plotting jackknife confidence intervals (c.f. [ET94]) for our estimates. Consideration (b)
carries a bit more weight: as shown in Appendix E.1, the n-sample naïve estimator has a roughly linear
relationship in 1/n, but not a perfect one—in particular, the estimator seems to increase at a rate slightly
faster than 1/n, suggesting that as a result, the jackknife still provides an underestimate of the selection-
adjusted accuracy.

Another potential source of error is finite-sample error in measuring the expectations Ex2∼D2 [ f (x2)|ŝn(x2)].
If the number of workers per image n is taken to infinity while keeping the number of images constant, the
observed selection frequencies will become too sparse to provide reliable estimates of the expectation. Thus
we rely on our assumption from Section 4 that finite-sample error is negligible with respect to images (since
we have 104 images and only 41 possible values of ŝ). Also, note that in principle, we could also use the
jackknife to estimate the distributions of true selection frequencies (pi(s(x))) by estimating the bias in the
statistic E[1ŝn(x)=k] for each value of k. However, this approach is too sample-expensive to yield reliable
results.

In the next section, we present another approach to estimating the selection-adjusted accuracy, namely
parametric modeling. Through a disjoint set of techniques and assumptions, we obtain estimates of pi(s(x))
and AD2|s1

that further corroborate the results so far.

5.3 Estimating bias with a parametric model

We now explore a more fine-grained approach to estimating the selection-adjusted accuracy of ImageNet-
v2, namely explicit parametric modeling. Recall that the adjusted accuracy captures accuracy on ImageNet-

13It is also possible to prove consistency even without this assumption by assuming a fixed relationship between the number of
images and the number of annotators per image, and at the cost of the proof’s simplicity.
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v2 reweighted to match ImageNet-v1 in terms of true selection frequency distribution, and is given by:

AD2|s1
=
∫

s
ED2 [ f (x)|s(x) = s] · p1(s) ds

=
∫

s∈[0,1]
p2 ( f (x2)|s(x2) = s) · p1(s) ds (6)

In Sections 5.1 we computed a biased estimate of AD2|s1
using observed selection frequencies ŝ in place of

true selection frequencies. Then, in 5.2 we corrected for the bias in this naïve estimator post-hoc using the
statistical jackknife.

In constrast, the model-based approach tries to circumvent this bias altogether: we parameterize func-
tions of the true selection frequency directly (i.e., p1(s) and p2( f (x) = 1|s(x) = s)), then fit parameters that
maximize the likelihood of the observed data while taking into account the noise model. For example, since
the distribution of ŝn(x) given s(x]) is the binomial distribution, we can write (and optimize) a closed-form
expression for the likelihood of observing a given set of selection frequencies based on a parameterized true
selection frequency distribution p1(s; θ). We estimate selection-adjusted accuracy in two steps. First, we fit
models for the true selection frequency distributions p1(s) and p2(s). Then, we use our estimate of p2(s) in
conjunction with observed data to fit models for p2( f (x)|s(x) = s). Finally, we recover estimates for AD2|s1
by numerically computing the integral in AD2|s1

(c.f. (6)), plugging in the learned parametric estimates.

Fitting a model to pi(s(x)). We model the pi(s(x)) as members of a parameterized family of distribution
pi(s(x); θ) with true parameters θ?i . Then, for each dataset i, we model the observed selection frequencies
as sampled from a compound distribution, in which one first samples s ∼ pi(·; θ?i ), then observes ŝ ∼
Binom (n, s) (where n is the number of MTurk annotators).

To infer each θ?i , we use maximum likelihood estimation on the observed samples over the compound
distribution. We opt to use mixtures of beta distributions as the family pi(·; θ) over which to optimize. Beta-
mixture distributions are a fairly popular modeling choice for finite-support data [Ji+05; ML09; Lau+11],
since beta distributions (a) have only two parameters; (b) induce smooth, continuous density functions with
support [0, 1]; and (c) admit a closed-form likelihood when composed with a binomial random variable, by
way of the beta-binomial distribution14.

A mixture of k beta distributions is a 3k − 1-parameter model; we denote the mixture coefficients by
γj (with ∑j γj = 1), and the parameters of each individual beta distribution in the mixture as (αj, β j). We
use Expectation-Maximization (EM) [DLR77] to find, for each dataset i ∈ {1, 2}, the maximum likelihood
mixture of k = 3 beta-binomial distributions for the observed ŝn(x). The log-likelihood is given by:

θ̂i := β(i), α(i), γ(i) = arg max
β,α∈R3

+ ,γ∈∆3
∑

x∼Di

log

(
3

∑
j=1

γjBetaBinom
(
αj, β j, N, x

))
,

where BetaBinom(α, β, N, x) is the density of the beta-binomial distribution parameterized by (α, β, N) and
evaluated at x. We provide further detail on the fitting process for pi(s(x); θ) in Appendix F, including
pseudocode for the EM algorithm. We plot the resulting fitted distributions pi(s(x)) in Figure 7. Our
estimated pi(ŝ; θ̂i) distributions continue the trend previously seen in Figure 5a, and show the extent to
which our naïve 40-sample empirical estimates of pi(s(x)) exhibit bias.

Fitting a model to p2( f (x) = 1|s(x) = s). Next, we consider accuracy conditioned on selection frequency:

g(s) = p2( f (x2) = 1|s(x2) = s).

While introducing the naïve estimator (Section 5.1), we found that that estimating g(s) using observed
selection frequencies instead of true selection frequencies results in bias (Figure 5b). Under the parametric
approach, we instead model g(s) as a member of a parametric class (i.e., g(s) = g(s; ω)), then account for
noise in observed selection frequencies via the following identity:

p2( f (x2) = 1, ŝn(x2) = ŝ) =
∫

s∈[0,1]
g(s) · p(ŝ|s) · p2(s) ds. (7)

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betabinom.html
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Figure 7: Our fit beta mixture models pi(s; θ̂) for “true” selection frequency, the noisy selection frequency
distribution they induce pi(ŝ; θ̂, and the observed selection frequency pi(ŝ). We observe that the fit pi(s; θ̂)
distributions place much more density on higher selection frequencies than naïvely estimating pi(s) from
the observed pi(ŝ).

Now, since g is an unknown but most likely smooth function from [0, 1] to [0, 1], a standard parameterized
family g(·; ω) to use is the class of cubic splines [De +78]. In particular, we try to find a g(s; ω) satisfying
the relationship described by (7) by optimizing the following squared error objective:

L(ω) := ∑̂
s

(
p2( f (x2) = 1, ŝn(x2) = ŝ)−

∫
s∈[0,1]

g(s; ω) · p(ŝ|s) · p2(s; θ̂2)ds
)2

. (8)

We can compute the left hand term above from observed data, and the right-hand term is a function of the
parametrized g(s; ω), the binomial mass function, and p2(s; θ̂2), which we estimated in the first step. After
discretizing the integral, (8) becomes a quadratic optimization problem 15 (since splines are linear in their
parameters).

Results. Once we have estimated probability distributions pi(s(x); θi) and the conditional classification
function g(s(x); ω), we can compute an estimate of AD2|s1

using Equation (6) and numerical integration.
Figure 6b depicts various models’ v1 and v2 accuracies both with and without the adjustment for selection
frequency. Our estimate for the frequency-adjusted gap in accuracy averaged over all models is 3.6%±
1.5%, around 30% of the original 11.7%± 1.0% gap in accuracy.

Beyond accuracy gap, Recht et al. [Rec+19b] also studied the linear relationship between v2 accuracy
and v1 accuracy while varying the classifier used—this is plotted by the blue dots in Figure 6b. This rela-
tionship is linear for our adjusted accuracies as well (cf. Figure 6b), however the slope we find is 1.01± 0.09
instead of 1.13± 0.05.

Considerations and limitations. Error in parametric modeling generally stems from two sources: finite-
sample error and model misspecification. These sources of error affect all parametric models, but we take
various precautions to mitigate their impact on our estimates.

To assess our finite-sample error, we give 95% bootstrapped confidence intervals (details are in Ap-
pendix F), which are displayed as error bars in Figure 6b. We also ensure that our results are not sensitive
to the number of annotators used to fit the parametric models (cf. Appendix F).

15Note the choice of least-squares loss here is entirely for convenience—in principle one could maximize the likelihood of p2( f (x2) =
1, ŝn(x2) = ŝ) instead at the cost of algorithmic simplicity and efficiency
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As with any modeling decision, our choices of model classes might not fully capture the ground-truth
generative process, and thus may be a source of error. We account for this as much as possible by demon-
strating the robustness of our results to varying the number of free parameters (cf. Appendix F).

6 Related Work

Researchers have developed a cornucopia of datasets (e.g. [LeC98; Kri09; Rus+15; Zho+17] in computer
vision) for benchmarking the generalization performance of supervised learning algorithms. The recent
rapid pace of progress has drawn interest to the question of verifying that the progress made by high-
performing models on standard dataset actually corresponds to progress on the underlying task, rather
than on the dataset itself. To this end, previous work has characterized cross-dataset generalization on
similar tasks [TE11] by measuring “dataset bias.” Prior work has also explored the impact of synthetic
perturbations on generalization, such as adversarial examples [KGB16; Tsi+19; Ily+19; Su+18] or various
other corruption robustness measures [HD19; Kan+19].

In terms of measuring same-distribution generalization beyond test set performance, a number of works
have emerged around evaluating performance on newly reproduced test sets, including works focusing
on ImageNet [Rec+19b], CIFAR [Rec+19b], and MNIST [YB19]. By and large, these works report accuracy
drops due to distribution shift, and claim that there is no adaptive overfitting.

Adaptively reusing data is a studied source of both overfitting in machine learning and, more generally,
false discovery in the sciences [GL14]. In machine learning, work has gone into theoretically characterizing
and counteracting the effects of adaptive overfitting [BH15; Dwo+15; Roe+19]. In computer vision in par-
ticular, Recht et al. [Rec+19b] and Mania et al. [Man+19] respectively give evidence that there is no adaptive
overfitting, and that model similarity reduces adaptive overfitting.

A common phenomena noted in ecology is overdispersion [Gre83], a form of sampling bias that can
emerge when one does not accurately model the underlying distribution generating samples. The bias we
discuss can be framed as an instantiation of this problem.

7 Discussion and Conclusions

Dataset replication pipelines can introduce unforeseen, often unintuitive statistical biases. In the case of
ImageNet-v2, even using unbiased estimates of image selection frequency in the data generation pipeline
results in a significant statistical bias, and ultimately turns out to account for a large portion of the observed
accuracy drop. Our findings give rise to the following considerations.

7.1 Remaining accuracy gap and unmodeled bias

Worker heterogeniety. Our study focuses on bias stemming from the fact that for a given image x one
never observes s(x) but rather ŝn(x) = Binom (n, s(x)). There is another source of bias due to noise that
we do not model here, namely variance in the MTurk annotator population. Specifically, some annotators
are more likely in general to select or reject independently of what image-label pair they are being shown.
This unmodeled variance likely translates to unmodeled bias, suggesting that more of the gap might be
explained by taking worker heterogeniety into account.

Task shift bias. At the time of the original ImageNet experiment, workers judged image-label pairs by
some abstract set of criteria C1. Suppose that at the time of the ImageNet-v2 experiment several years later,
annotators judged image-label pairs based on an overlapping but non-identical set of criteria C2. Ideally,
we should not care about differences between C1 and C2—indeed, one of the goals of dataset replication
is to test robustness to such benign distribution shifts. The source of the bias lies in the iterated nature
of the filtering experiment. In particular, after both the original experiment and the replication, images in
ImageNet-v1 now meet both C1 and C2. On the other hand, images in ImageNet-v2 only meet criteria C2,
and may be judged to have low selection frequency under C1—we would thus expect models to perform
better on ImageNet-v1 images due to their increased qualifications. Although this may contribute towards
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the remaining accuracy gap, this type of bias is difficult to study or correct for without more knowledge of
both experiments.

Other sources of error. The remaining error unexplained by bias in data collection could come from one
of the gap sources listed in Section 4, i.e., finite sample error, or distribution shift and adaptive overfit-
ting. Quantifying the potential contribution of the individual terms in the remaining gap will require more
experimentation and future work.

7.2 Adaptive overfitting and distribution shift

Identifying sources of distribution shift. A longstanding goal in computer vision is to develop models
that are less prone to failure under small distributional shifts. A step in the journey towards this goal is
precisely characterizing the kinds of distribution shifts under which models fail—examples include rota-
tions and translations of natural images Engstrom et al. [Eng+19], or corrupted natural images [HD19]. Our
findings imply that the drop may be attributable to differences in selection frequency distribution, corrob-
orating observations by Recht et al. [Rec+19b] that models are sensitive to selection frequency. Differences
in selection frequency distribution present another distribution shift to study in depth.

Implications for adaptive overfitting. A conclusion drawn from the ImageNet-v2 dataset replication is
that the slope of best fit line for v1 versus v2 accuracy is significantly larger than one. This means that
for every point of progress made on ImageNet, 1.1 points are made on ImageNet-v2, providing another
point of evidence towards the absence of adaptive overfitting. However, after correcting for the bias in
the v2 sampling process, v1 versus v2 model accuracies still exhibit a linear fit, but with a slope that is not
conclusively bounded away from 1 (i.e., slopes are within 95% confidence intervals of 1, c.f. Section 5.3).

Detecting and avoiding bias in dataset replication. More broadly, our analysis identifies statistical mod-
eling of the data collection pipeline as a useful tool for dataset replication. Indeed, characterizing the Im-
ageNet and ImageNet-v2 generative processes and isolating them in a a simple theoretical model allowed
for the discovery and correction of a source of bias in the dataset replication process.
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A Understanding Selection Frequency

Understanding Selection Frequencies In Figure 8 we randomly sample images while varying selection
frequency. Here, the straightforwardness of identifying images correlates with increasing selection fre-
quency (e.g. all the 36/36 selection frequency images clearly identify with their corresponding class, while
some of the 0/36 selection frequency images appear to be mislabeled).

0/
36

moving van toaster honeycomb chime water bottle

6/
36

shield vase Crock Pot ocarina stupa

12
/3

6

slot tub cassette trilobite tripod

18
/3

6

television printer platypus loupe triceratops

24
/3

6

passenger car cliff sliding door skunk chocolate sauce

30
/3

6

Irish wolfhound admiral wire-haired fox terrier coffee mug dock

36
/3

6

orange pelican matchstick beer bottle African hunting dog

Figure 8: Randomly drawn images from v1, varying selection frequency.
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B Experimental Setup

Here, we provide more detail of the experimental setup. We first lay out the setup of our Mechanical Turk
experiments for remeasuring selection frequency (B.1), and highlight the subtle differences between our
setup and that of Recht et al. [Rec+19b] (B.2). In Appendix D we discuss our analysis of the original data
and algorithm of Recht et al. [Rec+19b] showing the existence of bias in that setting.

B.1 Selection frequency remeasuring experiment

In Section 3, we replicate the ImageNet experiment to remeasure selection frequencies for the ImageNet
v1 and v2 datasets. We present annotators with a grids of 48 images along with an ImageNet class. The
annotators are also provided with the WordNet synsets for the ImageNet class being queried, along with a
Wikipedia link and asked to selected all images containing instances of that object (ignoring clutter as per
the original dataset creation process). The 48 images in each grid consist of: (a) 10 ImageNet v1 validation
set images from that class, (b) 10 ImageNet v2 validation set images from that class, (c) 22 related Flickr
images scraped from Flickr (using the exact script and queries described in Recht et al. [Rec+19b]) and
(c) 6 negative control images (three corresponding to randomly chosen labels, and 3 corresponding to the
“nearest” label to the true label in terms of WordNet path similarity).

We implemented our setup by modifying the code made publicly available by Recht et al. [Rec+19b] 16.
A screenshot of our interface appears in Figure 10. Each such grid of images is shown to 40 annotators. For
each image-class pair, we can then compute the “selection frequency” based on how often it was selected
by the annotators.

Deployment Details. There are a number of deployment details that could cause variations in results. We
compensated MTurk workers with $0.23 per assignment (i.e., each completed grid), which we calibrated to
pay a rate of at least $9/hr for most workers. To collect 40 separate MTurk annotations for each submitted
grid of images, we obtained 10 annotations on 4 different dates and times, all within the span of a single
week. We placed qualification requirements on the workers allowed to complete assignments. Specifically,
we filtered for workers that (a) agree to view adult content (as some ImageNet images have content like
nudity or gore) and (b) have a larger than 95% assignment approval rate (as to ensure the quality of the
results).

Controls. All of the results presented in this work were run on a “clean” and “raw” version of our data,
i.e., without and with data cleaning respectively. We find that the inclusion of data cleaning makes the
observed gap between v1 and v2 slightly larger but otherwise does not have a significant effect on results.

Our data cleaning process is as follows: a given batch is “flagged” if: (a) there are less than 6 selected
images out of the total 48, or (b) more than one of the negative controls was selected. We only omit data,
however, from workers whose batches were rejected at a rate of 30% or higher (e.g., if an annotator com-
pleted 30 batches, but more than 10 of them are flagged to be low-quality, then all of the annotator’s data is
omitted). Finally, to make computing of the statistics easier, we evened out the number of annotators per
image to equal the minimum number of remaining assignments per image, which was 36 (compared to 40
originally) by randomly discarding annotations. In total, the entire process corresponds to discarding 10%
of the annotations.

B.2 Comparison to the original setup

Recht et al. [Rec+19b] measure the average selection frequency of v1 to be 0.71, whereas our experiment
measures the average v1 selection frequency to be 0.85. While our experiments were modeled closely after
that of Recht et al. [Rec+19b] (and in fact use the same core codebase to minimize discrepancies in task
presentation/inferace), we made a few changes to the setup to ensure high data quality. We hypothesize
that these changes, discussed below, are what result in the discrepancy between the measured average
selection frequencies. However, since these changes are applied at the task level and annotators are not told

16https://github.com/modestyachts/ImageNetV2
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which dataset each image is sourced from, we find it unlikely that these changes would affect annotations
for one dataset more than the other. Furthermore, in Appendix D, we demonstrate that the bias identified
in this paper can be found even using the original data collected by Recht et al. [Rec+19b].

Worker pay and qualifications. In our experiment, we paid annotators 20 cents per set of 48 images
completed—this was informed by the average time taken to complete a batch, and was calibrated so
that the task paid approximately 12 dollars per hour. Conversely, the original experiment of Recht et al.
[Rec+19b] pay 10 cents per batch. Although worker pay usually has only a mild impact on worker relia-
bility on MTurk [MW09; BKG11], higher worker pay has been recognized as a tool to boost participation
rates [BKG11] and requester reputation for future experiments [PCI10].

Perhaps the most important modification made was our inclusion of worker qualifications, which only
allow annotators who have had 95% or more of previous tasks accepted to participate in our task. Prior
work has shown that without these worker qualifications, crowdsourced data tends to be of significantly
worse quality. For example, Peer, Vosgerau, and Acquisti [PVA13] report that 2.6% of workers with the
“95% accepted” qualification failed an “attention-check test,” compared to 33.9% of workers without qual-
ifications17. We should therefore expect a significant increase in annotation reliability (and so in turn some
discrepancy) from using worker qualifications.

Makeup of each batch. Another difference between the two experiments is that in our experiment, each
batch of images contains 10 images from ImageNet-v1, and 10 images from ImageNet-v2, in order to ensure
that we could obtain 40 annotations for each v1 and v2 image while keeping to a reasonable budget con-
straint. The experiment of Recht et al. [Rec+19b] uses only three images from ImageNet-v1 per batch (and a
variable number of ImageNet-v2 images, since the dataset was not yet realized). Thus, the grids presented
in our experiment contain images that are on average more likely (a priori) to be selected. This could in part
contribute to the higher average selection frequency that we observe (though again, we would expect this
effect to apply to both datasets and thus preserve the observed selection frequency gap).

Randomization. Response-order bias is a well-documented phenomenon in literature on crowdsourcing
(e.g. [SP81]), although its effects in the domain of image selection are not well-understood yet. In our exper-
iment, we randomize the order of the images per batch per worker (i.e., we used JavaScript to randomize
the image order on page load) to mitigate the potential effects of this bias. In the prior experiment, however,
the image order is deterministic, and thus the study may have response-order effects.

Worker duplicates. Due to the mechanism by which images were distributed to assignments in the study
of Recht et al. [Rec+19b], 5.6% of the annotations are duplicated (i.e., 5.6% of the [worker, image] pairs
collected are non-unique), with approximately 3% of the annotations being redundant (unlike the preceding
number, this fraction does not count the “original copy” of each non-unique pair). A histogram of the
number of times a single worker labeled a single image is shown in Figure 9. Since duplicate workers
violate sample indpendence and can skew measured selection frequencies for some images, in our study
we ensure that no worker labels the same image more than once.

Data cleaning and controls. Our study also differs in having built-in mechanisms for data cleaning (as
discussed in the last section), allowing us to run all of our experiment on the “cleaned” and “raw” versions
of our data. These results tend to not be substantially different (for the cleaned data, the selection frequency
gap we measure between v1 and v2 slightly increases from 4.5% to 4.6%). Possible reasons for this similarity
between cleaned and raw results include any of the quality control protocols outlined in this section.

17Attention-check tests are a series of three attention-check questions (ACQs). ACQs are questions with right/wrong answers
unrelated to the task meant to gauge an annotator’s attentiveness, e.g. “Have you ever had a fatal heart attack?”. In the Peer,
Vosgerau, and Acquisti [PVA13] study, 16.4% of unqualified workers reported that they had suffered a fatal heart attack, compared to
0.4% of qualified workers.
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Figure 9: A histogram showing the existence of duplicate (worker, batch) pairs present in the original
collected data. Each point in the histogram is a unique (worker, batch) pair, and the x axis corresponds to
the number of times that pair is observed in the dataset.

Figure 10: Screenshot of a sample grid to measure selection frequencies (Section 3). Annotators are given a
grid of 48 images for a specific label and asked to select all images that contain that label. The interface and
instructions are based on Recht et al. [Rec+19b].
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C Theoretical Results

In this section we show the series of calculations used in Section 2 to attain the result in Equation 1, i.e. the
bias incurred by a matching procedure in the toy model.

Recall that in our setup we have p f lickr(s) and p1(s) given by Beta(α, β) and Beta(α + 1, β) respectively,
and that ŝ(x) is given by first sampling s ∼ pi(s) then sampling n Bernoulli trials with success probability
s. We noted in Section 2 that the distribution of s(x) induced by matching p f lickr(s) and p1(s) based on
samples of ŝ(x) is given by:

p f lickr(s(x)) ·P(x is accepted|s(x)) = p f lickr(s(x)) ·
∫

ŝ
p(ŝ|s)P(x is accepted|ŝ(x))

= p f lickr(s(x)) ·
∫

ŝ
p(ŝ|s) p1(ŝ(x))

p f lickr(ŝ(x))

Now, note that by construction, ŝ(x) is distributed according to the beta-binomial distribution18, and
thus (a) has support {0, . . . , n}; and (b) induces the following closed-form probability mass function for
p f lickr(ŝ) (p1(ŝ) can be written analogously, with α + 1 replacing α) :

p f lickr(ŝ(x) = k) =
(

n
k

)
B(k + α, n− k + β)

B(α, β)
,

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
,

and Γ is the Gamma function—for simplicity we will assume that α, β ∈ N and so Γ(x) = (x− 1)!. Thus,
returning to the full induced density:

p f lickr(s(x)) ·
∫

ŝ
p(ŝ|s) p1(ŝ(x))

p f lickr(ŝ(x))

= p f lickr(s(x)) ·
n

∑
k=0

p(ŝ|s) p1(ŝ(x))
p f lickr(ŝ(x))

= p f lickr(s(x)) ·
n

∑
k=0

[(
n
k

)
sk(1− s)n−k

] [ (n
k)B(k+α+1,n−k+β)

B(α+1,β)

]
[
(n

k)B(k+α,n−k+β)
B(α,β)

]
=

[
sα−1 · (1− s)β−1

B(α, β)

]
·

n

∑
k=0

[(
n
k

)
sk(1− s)n−k

]
B(k + α + 1, n− k + β)

B(k + α, n− k + β)
· B(α, β)

B(α + 1, β)

=

[
sα−1 · (1− s)β−1

B(α + 1, β)

]
·

n

∑
k=0

[(
n
k

)
sk(1− s)n−k

]
B(k + α + 1, n− k + β)

B(k + α, n− k + β)

Now in general, note that

B(x + 1, y)
B(x, y)

=

Γ(x+1)Γ(y)
Γ(x+y+1)
Γ(x)Γ(y)
Γ(x+y)

=
Γ(x + 1)

Γ(x)
· Γ(x + y)

Γ(x + y + 1)
=

x
x + y

for x, y ∈N.

18https://en.wikipedia.org/wiki/Beta-binomial_distribution
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Applying this identity to the above and continuing to simplify:

=

[
sα−1 · (1− s)β−1

B(α + 1, β)

]
·

n

∑
k=0

[(
n
k

)
sk(1− s)n−k

]
k + α

n + α + β

=

[
sα−1 · (1− s)β−1

B(α + 1, β)

]
·Ek∼Binomial(n,s)

[
k + α

n + α + β

]
=

[
sα−1 · (1− s)β−1

B(α + 1, β)

]
· n · s + α

n + α + β

=
n

n + α + β
· s(α+1)−1 · (1− s)β−1

B(α + 1, β)
+

α

n + α + β
· sα−1 · (1− s)β−1

B(α + 1, β)

=
n

n + α + β
· s(α+1)−1 · (1− s)β−1

B(α + 1, β)
+

α

n + α + β
·
(

α + β

α
· B(α + 1, β)

B(α, β)

)
· sα−1 · (1− s)β−1

B(α + 1, β)

=
n

n + α + β
· Beta(α + 1, β) +

α + β

n + α + β
· Beta(α, β)

which matches precisely the result shown in Section 2.
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D Analysis of Original Data

In Section 3, we remeasured selection frequencies using a new Mechanical Turk experiment. Here we set
out to verify the existence of the hypothesized bias in the original collected data.

We reimplemented the sampling component of the algorithm exactly as described in [Rec+19b] and the
corresponding code release, using the pandas Python package. The source code is available in our code
release, along with a serialized version of the data collected by Recht et al. [Rec+19b]19. As a sanity check,
we verified that all of the results hold using the exact code published by Recht et al. [Rec+19b]20

D.1 Sampled dataset accuracy increases with more workers

We begin by showing that the accuracy we observe on ImageNet-v2 depends on the number of workers
used to sample the dataset. We gradually decrease the number of workers n used in computing observed
selection frequencies to study the effect of noise on statistic matching. We find that model accuracy on
the resulting replicated dataset degrades as n decreases. For example, the accuracy gap from v1 to the
replication increases from 12% when n = 10, to 14% when n = 5. This is consistent with our model of
statistic matching bias: fewer annotators means noisier observed selection frequencies ŝn(x), which in turn
amplifies the effect of the bias, driving down model accuracies.

Methodology. Specifically, we use the frequency-adjusted accuracy introduced in Section 5.1, to estimate
model accuracy on a version of the candidate pool reweighted to have the same selection frequency distri-
bution as ImageNet-v1:

Ân
D f lickr |s1

=
n

∑
k=0

Ex f lickr∼D f lickr

[
f (x f lickr)

∣∣∣∣ŝn(x f lickr) =
k
n

]
· p1

(
ŝn(x1) =

k
n

)
. (9)

This estimator is analogous to the ImageNet-v2 selection process of Recht et al. [Rec+19b], but operates by
reweighting the candidate pool rather than filtering it.

We plot this estimator in Figure 11, varying n from 5 to 10. We find that the gap between the adjusted
accuracy and ImageNet accuracy shrinks as n grows, until shrinking to (and not plateauing at) 12.3% at
n = 10. This behavior is predicted by statistic matching bias, and suggests that in the infinite-annotator
limit the ImageNet-v2 accuracy is higher. (Ideally, we could estimate the infinite-annotator limit using the
data of Recht et al. [Rec+19b], but 10 annotators is too few to get a reliable estimate.)
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Figure 11: The frequency-adjusted accuracy gap between ImageNet-v1 and ImageNet-v2, using a varying
number of annotators to estimate selection frequencies. The gap continually decreases, and does not plateau
at 10 annotators. Bootstrapped 95% confidence intervals are shown (shaded).

19https://github.com/MadryLab/dataset-replication-analysis
20Since we only study the sampling component, we opt to rewrite a specialized script that has the benefit of being significantly

shorter, simpler, and faster.
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D.2 Measuring the selection frequency gap using held-out workers

Recall that most images in Recht et al. [Rec+19b] have (at least) 10 annotations per image, and that to get
an unbiased estimate of the selection frequency we must “hold out” some annotations per image (e.g. we
should not use the same annotations for both matching and measuring selection frequencies). To that end,
we split the annotations for each candidate image into a “train” set and a “test” set. We then mimic the
original v2 creation process using only the train set of annotations, and use the remaining test annotations
for each image to obtain a held-out measurement of selection frequency.

Since Recht et al. [Rec+19b] collect 10 annotations for most candidate images, and since the original
buckets used in the matching process are split by boundaries {0, 0.2, 0.4, 0.6, 0.8, 1}, we use 5 annotations21

for each image in the train set and reserve the rest for independently measuring the held-out frequency.
The results of this experiment are given in Table 1. We repeat the experiment using both 5 and 10

annotators to estimate ImageNet-v1 selection frequencies. In both cases, the average selection frequency
of the in-sample images overestimates the heldout (true) selection frequency by 2-3%, and the resulting
replicated dataset has lower selection frequency than ImageNet-v1.

Table 1: Average in-sample and heldout selection frequencies for the experiment described in D.2—the
top (bottom) table presents the result of using 10 (5) annotators per image to estimate ImageNet-v1 selec-
tion frequencies. We use five annotators per image to estimate selection frqeuencies, then use the filtering
algorithm of Recht et al. [Rec+19b] to get a replicated dataset meant to match the selection frequency distri-
bution of ImageNet-v1. The results show that (a) bias results in the average selection frequency of the new
sample being lower than that of ImageNet-v1, and that (b) the bias is undetectable without heldout samples.

ImageNet-v1 Sampled replication

Average selection frequency 0.71 0.71
Heldout selection frequency 0.71 0.69

ImageNet-v1 Sampled replication

Average selection frequency 0.71 0.73
Heldout selection frequency 0.71 0.70

D.3 Source selection frequencies determine sampled dataset accuracy

We next explore how the choice of source distribution impacts the resulting sampled dataset. We use a setup
similar to that of the last experiment, in which we use five workers for the selection process. Then, using
four hold-out samples from each image, we create a new candidate data pool called Flickr-E (Flickr-Easy)
by including only the images which at least two out of the four heldout workers selected.

We then perform 5-worker statistic matching, both from Flickr and from Flickr-E to ImageNet-v1. In the
absence of bias, the source distribution should not affect the accuracy of the resulting classifier. In contrast,
we find that the dataset replication obtained from Flickr-v2 has comparable (within 0.2%) average selection
frequency, but significantly higher accuracy (by ~3%) than the replication obtained from the unfiltered
candidate pool (62%). This discrepancy further corroborates the hypothesis that ImageNet-v2 accuracies
are impacted by the statistical bias that we identify in this work.

21We choose 5 annotations specifically since, as in the 10-annotation case, images fall into the same relative locations in each bin—
other choices of annotations per image are severely affected by binning effects.
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E Non-parametric Adjusted Accuracy Estimation

In Section 5 we explore various methods of estimating the adjusted accuracy AD2|s1
from the observable ŝ

samples. Section 5.1 presents the naïve estimator, computed by using ŝ directly in place of s in the formula
for AD2|s1

. In Section 5.2, we show that using the statistical jackknife, we can estimate and account for the
bias in the naïve estimator to better estimate the true adjusted accuracy. Here, we first justify the application
of the jackknife in Section 5.2, by proving the consistency of the estimator and that bias is roughly linear in
(and in fact underestimated by) 1/n.

E.1 Justifying the use of the statistical jackknife

Recall that in Section 5, the quantity of interest is the following adjusted accuracy:

AD2|s1
=
∫

s
ED2 [ f (x)|s(x) = s] · p1(s) ds. (10)

In Section 5.1, we introduced the following naïve estimator

Ân
D2|s1

=
n

∑
k=0

Ex2∼D2

[
f (x2)|ŝn(x2) =

k
n

]
· p1

(
ŝn(x1) =

k
n

)
, (11)

which evaluates to AD2|s1
if ŝn(x) = s(x), and assuming the expectations above can be computed exactly.

Consistency of the naïve estimator. In order for our application of the statistical jackknife to be valid, we
must show that the naïve estimator is a consistent estimator of AD2|s1

—that is, as n → ∞, Ân
D2|s1

→ AD2|s1
.

Note that since we operate in the regime where the number of distinct images m greatly exceeds the number
of annotators per image n, we will assume that the expectations above can be computed exactly. Note that
the estimator remains consistent even if this is not the case, with the additional constraints that m→ ∞ and
m/n→ ∞, but this greatly complicates the proof and we will show empirically that the estimator is robust
to changes in m in the relevant regime.

Note that in the “infinite m” regime, the variance of the naïve estimator is 0. Thus, all of the error is
due to bias in the estimator. In the following, we assume that p1(s), p2(s), and p2(s| f = 1) are continuous
differentiable densities bounded away from zero and with bounded derivatives (|dr/dxr pi(x)| < C).

pi

(
ŝn(x) =

k
n

)
=
∫ 1

0
pi(s) · Binom (n, n, k, s) ds (12)

=
∫ 1

0
pi(s) ·

(
n
k

)
· sk · (1− s)n−k ds (13)

=
∫ 1

0
pi(s) ·

sk(1− s)n−k

(n + 1) · B(k + 1, n− k + 1)
ds B(·, ·) is the Euler beta function (14)

=
1

n + 1

∫ 1

0
pi(s) · Beta(s; k + 1, n− k + 1) ds (15)

=
1

n + 1
Es∼Beta(·;k+1,n−k+1)[pi(s)] (16)

Using a Taylor expansion of pi(s) around Es∼Beta(·;k+1,n−k+1)[s], we can bound the above expression:

=
1

n + 1
E

[
pi(E[s]) + (s−E[s])p′i(E[s]) +

(s−E[s])2

2
p′′i (E[s]) +

∞

∑
r=3

(s−E[s])r

r!
p(r)i (E[s])

]

=
1

n + 1

(
pi(E[s]) +

1
2

Var[s] · p′′i (E[s]) + O
(

1
n7/2

))
=

1
n + 1

pi

(
k + 1
n + 2

)
+

(k + 1)(n− k + 1)
(n + 1)(n + 2)2(n + 3)

· p′′i (E[s]) + O
(

1
n7/2

)
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Now, using the presumed boundedness of derivatives we can write:∣∣∣∣pi

(
ŝn(x) =

k
n

)
− 1

n + 1
· pi

(
k + 1
n + 2

)∣∣∣∣ ≤ (k + 1)(n− k + 1)
(n + 1)(n + 2)2(n + 3)

· p′′i (E[s]) + O
(

1
n7/2

)
(17)
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Now, note that the first term in the above is simply the error in the Riemmann sum approximation of the
integral, which vanishes as n → ∞. The second term is bounded by n times the error in each individual
term of the sum, which we bounded as O(n−2) in Equation (17).

Near-linearity of bias and likely underestimation. Recall that for the statistical jackknife to yield a reli-
able estimate of the adjusted accuracy, the bias in the naïve estimator must be analytic in 1

n , and in particular
should be dominated by a O( 1

n ) term (as this corresponds to precisely the term accounted for by the jack-
knife). In Figure 12 we show that the bias estimated by our jackknife procedure is indeed roughly linear in
1/n, but grows slightly faster than 1

n , likely leading the jackknife to provide an underestimate.
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Figure 12: We plot the jackknife adjusted accuracy estimators of 10 models. On the y axis is shown the value
of the n-sample jackknife estimate, with 1/n on the x axis. The fact that the plot is nearly linear suggests that
our bias is indeed dominated by a O(1/n) term, thus further justifying our use of the statistical jackknife
in Section 5.2. Furthermore, the slightly accelerating slope as one moves left on the plot indicates that any
error in the jackknife estimate is likely to be an underestimation of bias, rather than an overestimation.
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F Model Fitting

In this section, we describe our methods for parametric modeling.

F.1 Confidence Intervals

To construct 95% confidence intervals we perform 450 bootstrapped estimates (over the included images)
of adjusted accuracy for each classifier. We then plot the 2.5% and 97.5% percentiles from the bootstrap
estimates as the confidence intervals for each classifier.

F.2 Varying Annotators

We plot the results of varying the number of annotators in Figure 13.
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Figure 13: Replicating the v1 vs v2 accuracy plot using different numbers of annotators. We obtain similar
results even as we decrease the number of annotators by less than half.
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F.3 Varying Model Expressiveness

We plot the results of varying the number of parameters (here, by changing the number of beta distributions
in our mixture) in Figure 14.
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Figure 14: Replicating the v1 vs v2 accuracy plot using different numbers of parameters. We obtain similar
results even as we increase the number of parameters by more than four-fold.

F.4 EM Algorithm for Mixture Fitting

To fit the parameters of the beta-binomial mixture model we apply the Expectation-Maximization algo-
rithm, optimizing over mixture coefficients {πi}, as well as parameters of each mixture element {(αi, βi)}.
Our application of the EM algorithm is rather canonical—first, we compute membership probabilities pi

j
for each example j with respect to each mixture element i, then minimize the weighted log-likelihood with
respect to the mixture probabilities. Pseudocode is given in Algorithm 1.
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Algorithm 1 Our instantiation of the EM algorithm
Input: A set of size n of empirical selection probabilities {ŝj}, the observed rate at which each image was
selected, number of mixture components k.
Start with random guesses for all parameters:

αi, βi, πi ← random

for each training iteration do
1. Calculate membership probabilities for each observed element:

pi
j =

πi · p(ŝ; αi, βi, 40)

∑k
r=1 πr · p(ŝ; αr, βr, 40)

∀ j ∈ [n], i ∈ [k],

where p(·; α, β, 40) is likelihood under the beta-binomial distribution with 40 samples.
2. As is standard in EM, update the parameters by minimizing the expected log-likelihood, weighted
by the membership probabilities—i.e. update

αi, βi = min
α,β

n

∑
j=1

pi
j · `(ŝj; αi, βi, 40),

where `(·) = − log(p(·)) is the negative log-likelihood, and

πi =
∑n

j=1 pi
j

∑k
r=1 ∑n

j=1 pr
j

.

end for
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G Full Model Results

In Appendix Table 2, we detail the set of models we use in our evaluation along with their corresponding
Top-1 accuracies on ImageNet-v1 and -v2 validation sets. We use open-source pre-trained implementations
from https://github.com/rwightman/pytorch-image-models for all architectures.

Model v1 v2

tf_mobilenetv3_small_minimal_100 63.070% 48.270%
dla46_c 64.950% 51.330%
tf_mobilenetv3_small_075 65.490% 50.800%
dla46x_c 66.130% 52.200%
tf_mobilenetv3_small_100 67.500% 53.960%
dla60x_c 68.170% 55.660%
resnet18 70.420% 56.850%
gluon_resnet18_v1b 71.280% 57.610%
seresnet18 71.840% 58.200%
tf_mobilenetv3_large_minimal_100 71.910% 57.870%
hrnet_w18_small 72.860% 58.120%
tv_resnet34 73.080% 60.060%
spnasnet_100 73.760% 61.040%
tf_mobilenetv3_large_075 73.850% 59.430%
gluon_resnet34_v1b 74.470% 61.630%
mnasnet_100 74.620% 61.020%
densenet121 74.650% 61.810%
dla34 74.680% 61.510%
seresnet34 74.820% 62.330%
resnet34 74.990% 62.240%
hrnet_w18_small_v2 75.000% 61.540%
fbnetc_100 75.080% 61.240%
resnet26 75.270% 62.730%
semnasnet_100 75.690% 62.360%
tf_mobilenetv3_large_100 75.710% 61.400%
mobilenetv3_rw 75.740% 61.870%
tv_resnet50 75.820% 62.600%
dpn68 76.020% 63.000%
tf_mixnet_s 76.210% 62.040%
tf_efficientnet_b0 76.240% 63.050%
densenet169 76.370% 63.450%
hrnet_w18 76.500% 64.560%
mixnet_s 76.570% 62.840%
dla60 76.800% 64.610%
efficientnet_b0 76.820% 64.050%
seresnext26_32x4d 76.980% 64.050%
resnet26d 77.020% 63.970%
resnet101 77.090% 65.020%
tf_mixnet_m 77.120% 63.540%
tf_efficientnet_b0_ap 77.130% 64.290%
tf_efficientnet_cc_b0_4e 77.190% 64.110%
tf_efficientnet_es 77.200% 64.360%
inception_v3 77.240% 65.090%
densenet161 77.240% 64.790%
densenet201 77.280% 64.480%
res2net50_48w_2s 77.420% 64.260%
gluon_resnet50_v1b 77.530% 65.130%
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adv_inception_v3 77.680% 65.380%
mixnet_m 77.710% 64.090%
gluon_resnet50_v1c 77.710% 65.180%
dpn68b 77.720% 64.830%
tf_efficientnet_cc_b0_8e 77.740% 64.410%
resnet152 77.760% 66.410%
tv_resnext50_32x4d 77.790% 65.130%
dla60_res2next 77.980% 65.820%
hrnet_w30 78.010% 65.860%
seresnet50 78.020% 65.160%
res2net50_26w_4s 78.050% 64.590%
seresnet101 78.070% 66.150%
dla60x 78.160% 66.090%
res2next50 78.180% 65.370%
tf_inception_v3 78.220% 65.480%
dla102 78.290% 65.710%
hrnet_w44 78.300% 67.130%
dla169 78.380% 66.450%
wide_resnet101_2 78.430% 65.460%
wide_resnet50_2 78.430% 65.750%
tf_efficientnet_b1 78.530% 65.620%
res2net50_14w_8s 78.540% 65.180%
hrnet_w32 78.600% 65.620%
dla60_res2net 78.610% 65.550%
tf_mixnet_l 78.610% 65.750%
hrnet_w40 78.670% 66.600%
efficientnet_b1 78.690% 66.300%
tf_efficientnet_em 78.710% 65.560%
resnext50_32x4d 78.790% 66.530%
dla102x 78.810% 66.140%
seresnet152 78.850% 66.540%
hrnet_w48 78.860% 66.320%
gluon_inception_v3 78.880% 66.110%
res2net50_26w_6s 78.890% 66.200%
mixnet_l 78.890% 66.180%
resnet50 79.000% 65.770%
hrnet_w64 79.090% 67.650%
res2net50_26w_8s 79.100% 66.710%
xception 79.110% 66.320%
gluon_resnet101_v1b 79.110% 66.300%
gluon_resnet50_v1s 79.140% 66.220%
gluon_resnet50_v1d 79.200% 66.740%
tf_efficientnet_b1_ap 79.330% 66.290%
tf_efficientnet_cc_b1_8e 79.360% 65.890%
dla102x2 79.400% 67.830%
seresnext50_32x4d 79.420% 66.790%
resnext101_32x8d 79.490% 66.660%
gluon_resnext50_32x4d 79.630% 67.610%
gluon_resnet101_v1c 79.660% 66.870%
resnext50d_32x4d 79.700% 67.700%
tf_efficientnet_b2 79.730% 67.320%
res2net101_26w_4s 79.740% 66.750%
dpn98 79.830% 67.550%
dpn107 79.950% 67.490%
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dpn131 80.020% 67.580%
gluon_resnet152_v1b 80.030% 67.610%
gluon_xception65 80.070% 68.000%
ens_adv_inception_resnet_v2 80.080% 68.630%
efficientnet_b2 80.080% 67.490%
gluon_seresnext50_32x4d 80.100% 67.800%
inception_v4 80.170% 68.490%
gluon_resnet152_v1c 80.230% 67.660%
gluon_resnet101_v1s 80.320% 68.020%
mixnet_xl 80.340% 68.000%
tf_efficientnet_el 80.550% 67.190%
seresnext101_32x4d 80.570% 69.050%
gluon_resnext101_32x4d 80.580% 67.510%
dpn92 80.600% 66.750%
tf_efficientnet_b2_ap 80.680% 67.380%
inception_resnet_v2 80.840% 68.750%
gluon_resnext101_64x4d 80.860% 69.050%
gluon_resnet152_v1d 80.870% 68.730%
gluon_resnet101_v1d 81.020% 67.960%
gluon_seresnext101_32x4d 81.060% 68.890%
gluon_resnet152_v1s 81.470% 68.980%
gluon_seresnext101_64x4d 81.700% 69.040%
tf_efficientnet_b3 81.810% 69.360%
gluon_senet154 81.900% 69.930%
senet154 82.100% 70.020%
tf_efficientnet_b3_ap 82.130% 69.920%
nasnetalarge 82.780% 71.660%
pnasnet5large 83.210% 71.970%
tf_efficientnet_b4 83.350% 71.920%
tf_efficientnet_b5 84.030% 72.200%
tf_efficientnet_b4_ap 84.210% 72.130%
tf_efficientnet_b5_ap 84.260% 73.520%
tf_efficientnet_b6 84.510% 72.940%
tf_efficientnet_b6_ap 85.000% 74.570%
tf_efficientnet_b7_ap 85.460% 75.110%

Table 2: Models used in our analysis with the corresponding Top-1
on the ImageNet v1 and v2 validation sets.
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